Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
1,173 Projects

  • 2013-2022
  • UKRI|EPSRC
  • OA Publications Mandate: No
  • 2016

10
arrow_drop_down
  • Funder: UKRI Project Code: EP/K006010/1
    Funder Contribution: 39,395 GBP

    This proposal addresses the challenge "How do we make better security decisions?". Specifically we propose to develop new approaches to decision support based on mathematical game theory. Our work will support professionals who are designing secure systems and also those charged with determining if systems have an appropriate level of security -- in particular, systems administrators. We will develop techniques to support human decision making and techniques which enable well-founded security design decisions to be made. We recognise that the emerging trend away from corporate IT systems towards a Bring-Your-Own-Device (BYOD) culture will bring new challenges and changes to the role of systems administrator. However, even in this brave new world, companies will continue to have core assets such as the network infrastructure and the corporate database which will need the same kind of protection. It is certainly to be expected that some of the attacks will now originate from inside the corporate firewall rather than from outside. Our team will include researchers from the Imperial College Business School who will help us to ensure that our models are properly reflecting these new threats. Whilst others have used game theoretic approaches to answer these questions, much of the previous work has been more or less ad hoc. As such the resulting security decisions may be based on unsound principles. In particular, it is common to use abstractions without giving much consideration to the relationship between properties of the abstract model and the real system. We will develop a new game theoretic framework which enables a precise analysis of these relationships and hence provides a more robust decision support tool.

    more_vert
  • Funder: UKRI Project Code: TS/I002170/1
    Funder Contribution: 477,743 GBP

    This project develops an approach, genomic selection, to increase the rate at which varieties of Spring barley are developed. This is a very important crop in national agriculture, particularly for the malting, brewing and distilling industries. It is important that the rate with which improved varieties are created is increased so that more effort can be placed by breeders on improving disease resistance while maintaining or increasing grain yield and grain quality, which remain of greatest importance to growers and end users.Genomic selection represents a way of predicting traits purely from genetic markers rather than by direct measurement. These predictions require that a set of plants is first measured for the target traits so that the effect of each marker can be estimated. However, after that, selection can occur for several generations purely on markers.Direct measurement of many traits can take much longer than a single growing season: seed must first be bulked up over several generations to provide a sufficient quantity for yield trials. In contrast, marker data can be collected within the generation time of any crop and is therefore much faster than conventional selection.Other approaches to plant breeding using genetic molecular markers have been in use for many years. In these, a very small numbers of markers with strong evidence of an affect on a trait are first identified. These are then tracked through the breeding programme. Genomic selection differs in that all available markers are used to predict traits: the more markers the better. The inclusion of all markers gives more accurate prediction of overall trait values even though the precise involvement of each marker is known with less certainty.Our study has four themes. Firstly, throughout the life of the project, we shall develop new statistical methods to establish relationships between very high numbers of genetic markers and traits. The methods we develop will be more focussed on the problems of plant breeding: most methods to date have been targeted at animal breeding. Secondly, we shall test methods which are available now using historical data available from to an existing Spring barley scheme. Results will be used immediately to make selections within this scheme. We expect to register new varieties from these selections within the five year life of the project.Next, we shall use results from the analysis of the historical data together with any early methodological developments we make to create crosses specifically to exploit genomic selection. These crosses may not necessarily be the typical crosses between two parents which are commonly used by breeders but may involve more complicated crossing schemes involving, for example four parents. Within the life of the project, we shall test whether this approach gives a greater response to selection that achieved by more conventional breeding, but there will be insufficient time to resister a new variety.Finally, we shall integrate results and methods from the first three phases to completely redesign the breeding programme to get the greatest advantage out of genomic selection.In short, we plan to develop a new approach to Spring barley breeding .Genomic selection could result in a fundamental change to the way crops are bred and enable targets for increased food production and environmental sustainability to be met. Compared to other temperate crops, Spring barley has a short generation time which make it well suited to develop and test these ideas, which may also be applicable to other crops.

    more_vert
  • Funder: UKRI Project Code: EP/I00212X/2
    Funder Contribution: 1,091,730 GBP

    There is an accepted need to promote step changes towards more sustainable urban environments, notably in transport and travel, which we will focus on. While many model-based desk-studies have aimed to simulate such environments as part of a decision support tool, they adopt many unvalidated, hypothetical assumptions, particularly in the way that major transport focused interventions might impact on both behaviour and the effectiveness of the infrastructure. There is very little real evidence of what works and what can be used to promote such changes, deriving from either the physical nature and make-up of urban environments and in the way that people choose to act and behave. This 5 year proposal will build on the momentum of major EPSRC- and ESRC-supported activity at the Institute for Transport Studies (ITS) at the University of Leeds and the Centre for Research on Socio-Cultural Change (CRESC) at the University of Manchester in order to fill this evidence gap, providing an empirically grounded frame for the modelling of transformational futures.The project seeks to produce a step change in current knowledge and practice using a mix of new data sources, methodological innovation in analysis of this diverse data, development of new planning practices and procedures and supporting modelling tools. To this end it will develop visions of urban futures of 2050 which are both resilient to external change and sustainable. The knowledge and procedures developed as part of this project will provide a foundation upon which planners and others involved in decision-making in relation to urban transport, at both local and national levels, can start to put in place the necessary changes to achieve the resilient and sustainable visions of 2050.The proposed research is ambitious and novel. We will undertake the first largely qualitative longitudinal panel study of households which focuses on their transport activity, in particular delving into questions of why they do certain things and how change might be brought about. This work will be complemented by study of historical information over longer periods of time, making use of available information from a variety of transport and non-transport databases, coupled with testimony from planners and others in two study areas who have experienced changes first hand. The task of bringing these diverse data sources together will be innovative and seek to effectively explore ways of integrating these materials in a number of different ways which recognise the complexity of decisions and practices around transport and allow us to draw some understanding of why step changes occur. We will use the results of these analyses to feed into more theoretical work which will consider firstly the potential for new planning procedures and practice and secondly new modelling tools which provide the means to help achieve the step changes necessary in transport for sustainable and resilient urban futures by 2050.

    visibility20
    visibilityviews20
    downloaddownloads158
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/J009733/1
    Funder Contribution: 406,787 GBP

    The peculiar behaviour of liquid and supercooled water has been baffling science for at least 236 years and is still seen as a major challenge facing chemistry today (Whitesides & Deutch, Nature 469, 21 (2011)). It was suggested that such strange behaviour might be caused by thermodynamic transitions, possibly even a second critical point. This second critical point would terminate a coexistence line between low- and high-density amorphous phases of water. Unfortunately, this second critical point (if it exists) and the associated polyamorphic liquid-liquid transition is difficult to study as it is thought to lie below the homogeneous nucleation temperature in a region known as "no man's land" (Angell, Science 319, 582 (2008)). In recent preliminary femtosecond optical Kerr-effect spectroscopy experiments, we have shown that water in concentrated eutectic solutions forms nanometre scale pools in which it retains many if not most of its bulk liquid characteristics. Most importantly, such solutions can be cooled to below 200 K without crystallisation (typically forming a glass at lower temperatures) allowing one to explore "no man's land" in detail for the first time. Preliminary experiments combining femtosecond spectroscopy with NMR diffusion measurements have shown that water in these pools undergoes a liquid-liquid transition as predicted for bulk water. Hence, it is proposed to use such nanopools as nanometre scale laboratories for the study of liquid and glassy water. A wide-ranging international collaboration has been set up to be able to study different critical aspects of the structure and dynamics of water. This includes cryogenic viscosity measurements, large dynamic-range (femtosecond to millisecond) optical Kerr-effect experiments, pulsed field gradient NMR, dielectric relaxation spectroscopy, terahertz time-domain spectroscopy, infrared pump-probe spectroscopy, and two-dimensional infrared spectroscopy. To ensure maximum impact of the experimental work, it is critical to have strong ties with experts in the theory and simulation of water and its thermodynamic behaviour. We have arranged collaboration with two international theory groups covering different aspects of the proposed work. Although the proposed research is relatively fundamental in nature, it will have impact as described in more detail elsewhere. The research addresses EPSRC priorities in nanoscience (supramolecular structures in liquids), energy (proton transport and liquid structuring in electrolytes for batteries and fuel cells), life sciences (the role of water in and on biomolecules), and the chemistry-chemical engineering interface (the role of the structuring of water in crystal nucleation). Our strong links with theory collaborators will ensure that fundamental insights will indeed propagate to the 'users' of such information. The close working relationship between the PI and CI has made Glasgow a centre of excellence in advanced femtosecond spectroscopy. This project exploits this expertise and international collaborations to immerse PDRAs and PGRSs in internationally leading research using state-of-the-art previously funded equipment.

    visibility8
    visibilityviews8
    downloaddownloads414
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/J502121/1
    Funder Contribution: 69,121 GBP

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at https://www.ukri.org/apply-for-funding/how-we-fund-studentships/. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

    more_vert
  • Funder: UKRI Project Code: EP/K008781/1
    Funder Contribution: 347,135 GBP

    Efficient air traffic management depends on reliable communications between aircraft and the air traffic control centres. However there is a lack of ground infrastructure in the Arctic to support communications via the standard VHF links (and over the Arctic Ocean such links are impossible) and communication via geostationary satellites is not possible above about 82 degrees latitude because of the curvature of the Earth. Thus for the high latitude flights it is necessary to use high frequency (HF) radio for communication. HF radio relies on reflections from the ionosphere to achieve long distance communication round the curve of the Earth. Unfortunately the high latitude ionosphere is affected by space weather disturbances that can disrupt communications. These disturbances originate with events on the Sun such as solar flares and coronal mass ejections that send out particles that are guided by the Earth's magnetic field into the regions around the poles. During such events HF radio communication can be severely disrupted and aircraft are forced to use longer low latitude routes with consequent increased flight time, fuel consumption and cost. Often, the necessity to land and refuel for these longer routes further increases the fuel consumption. The work described in this proposal cannot prevent the space weather disturbances and their effects on radio communication, but by developing a detailed understanding of the phenomena and using this to provide space weather information services the disruption to flight operations can be minimised. The occurrence of ionospheric disturbances and disruption of radio communication follows the 11-year cycle in solar activity. During the last peak in solar activity a number of events caused disruption of trans-Atlantic air routes. Disruptions to radio communications in recent years have been less frequent as we were at the low phase of the solar cycle. However, in the next few years there will be an upswing in solar activity that will produce a consequent increase in radio communications problems. The increased use of trans-polar routes and the requirement to handle greater traffic density on trans-Atlantic routes both mean that maintaining reliable high latitude communications will be even more important in the future.

    more_vert
  • Funder: UKRI Project Code: EP/K011588/1
    Funder Contribution: 255,173 GBP

    Differential geometry is the study of "smooth shapes", e.g. curved surfaces that have no rough edges or sharp bends. A surface is a 2-dimensional object, and one can similarly imagine smooth shapes that are 1-dimensional, such as a line, or curve, or circle. What is much harder to imagine, but can nonetheless be described in precise mathematical terms, is a smooth shape in an arbitrary number of dimensions: these objects are called "manifolds". A specific example of a 2-dimensional manifold is a disk, i.e. the region inside a circle, and its "boundary" is a 1-dimensional manifold, namely the circle. Similarly, for any positive integer n, an n-dimensional manifold may have a boundary which is an (n-1)-dimensional manifold. All the 3-dimensional manifolds that we can easily picture are of this type: e.g. if we imagine any surface in 3-dimensional space, such as a sphere or a "torus" (the shape of the surface of a doughnut), then the region inside that surface is a 3-dimensional manifold whose boundary is the surface. We can now ask one of the most basic questions concerning manifolds: given an n-dimensional manifold, is it the boundary of something? This is actually not just a geometric question, but really a question of "topology", which is a certain way of studying the "overall shape" of geometric objects. As in the example given above, most 2-dimensional manifolds that we can easily imagine are boundaries of the 3-dimensional regions they enclose. But for a more interesting example, we can try to imagine a "Klein bottle": this is a surface formed by taking an ordinary bottle and bending its opening around and through the glass into the inside, then connecting the opening to the floor of the bottle by curving the floor upward. The result is a surface that is not a boundary of anything, as its inside is not distinct from its outside; like a Moebius strip, but closed in on itself. The subject of this proposal concerns a more elaborate version of the above question about boundaries: we deal with a particular type of manifold in an even number of dimensions, called "symplectic" manifolds, and their odd-dimensional boundaries are called "contact" manifolds. The idea of a symplectic manifold comes originally from physics: a century ago, symplectic manifolds were understood to be the natural geometric setting in which to study Hamilton's 19th century reformulation of Newton's classical mechanics. Today symplectic manifolds are considered interesting in their own right, and they retain a connection to physics, but of a very different and non-classical sort: by studying certain special surfaces in symplectic manifolds with contact boundary, one can define a so-called "Symplectic Field Theory" (or "SFT" for short), which bears a strong but mysterious resemblance to some of the theories that modern physics uses to describe elementary particles and their interactions. Unlike those theories, SFT does not help us to predict what will happen in a particle accelerator, but it can help us answer a basic question in the area of "Symplectic and Contact Topology": given a contact manifold, is it the boundary of any symplectic manifold? More generally, one way to study contact manifolds themselves is to consider the following relation: we say that two such manifolds are "symplectically cobordant" if they form two separate pieces of the boundary of a symplectic manifold. The question of whether two given contact manifolds are cobordant helps us understand what kinds of contact manifolds can exist in the first place, and Symplectic Field Theory is one of the most powerful methods we have for studying this. The goal of this project is thus to use this and related tools to learn as much as we can about the symplectic cobordism relation on contact manifolds. Since most previous results on this subject have focused on 4-dimensional manifolds with 3-dimensional boundaries, we aim especially to gain new insights in higher dimensions.

    more_vert
  • Funder: UKRI Project Code: EP/J502030/1
    Funder Contribution: 345,605 GBP

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at https://www.ukri.org/apply-for-funding/how-we-fund-studentships/. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

    more_vert
  • Funder: UKRI Project Code: EP/K022830/1
    Funder Contribution: 237,733 GBP

    This proposal brings together a critical mass of scientists from the Universities of Cardiff, Lancaster, Liverpool and Manchester and clinicians from the Christie, Lancaster and Liverpool NHS Hospital Trusts with the complementary experience and expertise to advance the understanding, diagnosis and treatment of cervical, oesophageal and prostate cancers. Cervical and prostate cancer are very common and the incidence of oesophageal is rising rapidly. There are cytology, biopsy and endoscopy techniques for extracting tissue from individuals who are at risk of developing these diseases. However the analysis of tissue by the standard techniques is problematic and subjective. There is clearly a national and international need to develop more accurate diagnostics for these diseases and that is a primary aim of this proposal. Experiments will be conducted on specimens from all three diseases using four different infrared based techniques which have complementary strengths and weaknesses: hyperspectral imaging, Raman spectroscopy, a new instrument to be developed by combining atomic force microscopy with infrared spectroscopy and a scanning near field microscope recently installed on the free electron laser on the ALICE accelerator at Daresbury. The latter instrument has recently been shown to have considerable potential for the study of oesophageal cancer yielding images which show the chemical composition with unprecedented spatial resolution (0.1 microns) while hyperspectral imaging and Raman spectroscopy have been shown by members of the team to provide high resolution spectra that provide insight into the nature of cervical and prostate cancers. The new instrument will be installed on the free electron laser at Daresbury and will yield images on the nanoscale. This combination of techniques will allow the team to probe the physical and chemical structure of these three cancers with unprecedented accuracy and this should reveal important information about their character and the chemical processes that underlie their malignant behavior. The results of the research will be of interest to the study of cancer generally particularly if it reveals feature common to all three cancers. The infrared techniques have considerable medical potential and to differing extents are on the verge of finding practical applications. Newer terahertz techniques also have significant potential in this field and may be cheaper to implement. Unfortunately the development of cheap portable terahertz diagnositic instruments is being impeded by the weakness of existing sources of terahertz radiation. By exploiting the terahertz radiation from the ALICE accelerator, which is seven orders of magnitude more intense that conventional sources, the team will advance the design of two different terahertz instruments and assess their performance against the more developed infrared techniques in cancer diagnosis. However before any of these techniques can be used by medical professionals it is essential that their strengths and limitations of are fully understood. This is one of the objectives of the proposal and it will be realised by comparing the results of each technique in studies of specimens from the three cancers that are the primary focus of the research. This will be accompanied by developing data basis and algorithms for the automated analysis of spectral and imaging data thus removing subjectivity from the diagnostic procedure. Finally the team will explore a new approach to monitoring the interactions between pathogens, pharmaceuticals and relevant cells or tissues at the cellular and subcellular level using the instruments deployed on the free electron laser at Daresbury together with Raman microscopy. If this is successful, it will be important in the longer term in developing new treatments for cancer and other diseases.

    more_vert
  • Funder: UKRI Project Code: EP/J021709/1
    Funder Contribution: 329,399 GBP

    Methods for the formation of C-C and C-Y (Y = O, N) bonds are crucial for the synthesis of new molecules. In the last 30 years there have been huge advances in Pd-catalysed cross-coupling reactions and this was recognized in the award of the 2011 Nobel Prize. These reactions involve joining together two organic molecules, one of which features a bond between carbon and a halogen (a C-X bond) while the other coupling partner may feature a non-carbon centre such as tin, boron or zinc (a C-M bond). The coupling of these two partners to give a new C-C bond usually involves a palladium catalyst. More recent versions have coupled C-N or C-O bonds. These coupling reactions generally work well, however the efficiency of this individual step masks significant waste of time and energy, as well as problems with environmental sustainability. These problems arise because both C-X and C-M coupling partners ultimately derive from precursors that only contain C-H bonds and therefore require prior synthesis. This preactivation usually involves several steps, each with costly energy and purification implications. Moreover, the final coupling process itself eliminates salts (M-X) that must first of all be separated from the reaction products before disposal. This is a further costly and expensive process that often has a significant environmental impact. A far more desirable approach would be to use the unactivated C-H containing precursors directly as the coupling partners. Such compounds are readily available and cheap. This approach would circumvent the need for the costly and wasteful preactivation that is required to make C-X and M-C species, as well as the post processing clean up of M-X by-products. Until very recently this approach has not been adopted as C-H based precursors are usually rather chemically inert. However, catalysis based on such C-H species (catalytic C-H functionalisation) is now within reach, mainly due to recent advances where the means to activate the C-H bond with a transition metal catalyst have been understood. A key point in C-H functionalisation is to have a directing group elsewhere on the feedstock molecule so that it can interact with the metal catalyst and so bring the C-H bond close enough to react. The M-C bond that is thus formed can then undergo reactions with other substrates to produce the desired C-C, C-N or C-O bond. Moreover, if instead this new bond is formed with another atom in the same molecule then a ring is formed. Such cyclic compounds containing an N or O atom are called heterocyclic compounds and play a key role as major constituents of pharmaceuticals and agrochemicals. In addition, they often have interesting optical and electrical properties in their own right that are important in a range of technological applications. It is therefore crucial that the synthesis of heterocyclic compounds is as efficient as possible; moreover the need for a wide range of heterocycles with different properties depends upon the development of new, efficient methods for their synthesis. Although there is precedent for this type of catalytic C-H functionalisation in the scientific literature, to date there is little understanding of what controls this reactivity. Thus the range of species that can be made is limited, the catalysis is not yet efficient and the selectivity of the reaction is poorly understood. To improve this situation requires a deeper understanding of how these systems work. We aim to provide this here through a combination of experimental studies and computational modeling. By understanding the factors that control reactivity and selectivity we will be able to design new, more efficient catalysts and also to widen the scope of the catalytic C-H functionalisation methodology. The ultimate aim is to provide a flexible set of efficient synthetic tools that chemists will be able to use to make a wide range of important heterocycles in an environmentally sustainable manner.

    more_vert
Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
1,173 Projects
  • Funder: UKRI Project Code: EP/K006010/1
    Funder Contribution: 39,395 GBP

    This proposal addresses the challenge "How do we make better security decisions?". Specifically we propose to develop new approaches to decision support based on mathematical game theory. Our work will support professionals who are designing secure systems and also those charged with determining if systems have an appropriate level of security -- in particular, systems administrators. We will develop techniques to support human decision making and techniques which enable well-founded security design decisions to be made. We recognise that the emerging trend away from corporate IT systems towards a Bring-Your-Own-Device (BYOD) culture will bring new challenges and changes to the role of systems administrator. However, even in this brave new world, companies will continue to have core assets such as the network infrastructure and the corporate database which will need the same kind of protection. It is certainly to be expected that some of the attacks will now originate from inside the corporate firewall rather than from outside. Our team will include researchers from the Imperial College Business School who will help us to ensure that our models are properly reflecting these new threats. Whilst others have used game theoretic approaches to answer these questions, much of the previous work has been more or less ad hoc. As such the resulting security decisions may be based on unsound principles. In particular, it is common to use abstractions without giving much consideration to the relationship between properties of the abstract model and the real system. We will develop a new game theoretic framework which enables a precise analysis of these relationships and hence provides a more robust decision support tool.

    more_vert
  • Funder: UKRI Project Code: TS/I002170/1
    Funder Contribution: 477,743 GBP

    This project develops an approach, genomic selection, to increase the rate at which varieties of Spring barley are developed. This is a very important crop in national agriculture, particularly for the malting, brewing and distilling industries. It is important that the rate with which improved varieties are created is increased so that more effort can be placed by breeders on improving disease resistance while maintaining or increasing grain yield and grain quality, which remain of greatest importance to growers and end users.Genomic selection represents a way of predicting traits purely from genetic markers rather than by direct measurement. These predictions require that a set of plants is first measured for the target traits so that the effect of each marker can be estimated. However, after that, selection can occur for several generations purely on markers.Direct measurement of many traits can take much longer than a single growing season: seed must first be bulked up over several generations to provide a sufficient quantity for yield trials. In contrast, marker data can be collected within the generation time of any crop and is therefore much faster than conventional selection.Other approaches to plant breeding using genetic molecular markers have been in use for many years. In these, a very small numbers of markers with strong evidence of an affect on a trait are first identified. These are then tracked through the breeding programme. Genomic selection differs in that all available markers are used to predict traits: the more markers the better. The inclusion of all markers gives more accurate prediction of overall trait values even though the precise involvement of each marker is known with less certainty.Our study has four themes. Firstly, throughout the life of the project, we shall develop new statistical methods to establish relationships between very high numbers of genetic markers and traits. The methods we develop will be more focussed on the problems of plant breeding: most methods to date have been targeted at animal breeding. Secondly, we shall test methods which are available now using historical data available from to an existing Spring barley scheme. Results will be used immediately to make selections within this scheme. We expect to register new varieties from these selections within the five year life of the project.Next, we shall use results from the analysis of the historical data together with any early methodological developments we make to create crosses specifically to exploit genomic selection. These crosses may not necessarily be the typical crosses between two parents which are commonly used by breeders but may involve more complicated crossing schemes involving, for example four parents. Within the life of the project, we shall test whether this approach gives a greater response to selection that achieved by more conventional breeding, but there will be insufficient time to resister a new variety.Finally, we shall integrate results and methods from the first three phases to completely redesign the breeding programme to get the greatest advantage out of genomic selection.In short, we plan to develop a new approach to Spring barley breeding .Genomic selection could result in a fundamental change to the way crops are bred and enable targets for increased food production and environmental sustainability to be met. Compared to other temperate crops, Spring barley has a short generation time which make it well suited to develop and test these ideas, which may also be applicable to other crops.

    more_vert
  • Funder: UKRI Project Code: EP/I00212X/2
    Funder Contribution: 1,091,730 GBP

    There is an accepted need to promote step changes towards more sustainable urban environments, notably in transport and travel, which we will focus on. While many model-based desk-studies have aimed to simulate such environments as part of a decision support tool, they adopt many unvalidated, hypothetical assumptions, particularly in the way that major transport focused interventions might impact on both behaviour and the effectiveness of the infrastructure. There is very little real evidence of what works and what can be used to promote such changes, deriving from either the physical nature and make-up of urban environments and in the way that people choose to act and behave. This 5 year proposal will build on the momentum of major EPSRC- and ESRC-supported activity at the Institute for Transport Studies (ITS) at the University of Leeds and the Centre for Research on Socio-Cultural Change (CRESC) at the University of Manchester in order to fill this evidence gap, providing an empirically grounded frame for the modelling of transformational futures.The project seeks to produce a step change in current knowledge and practice using a mix of new data sources, methodological innovation in analysis of this diverse data, development of new planning practices and procedures and supporting modelling tools. To this end it will develop visions of urban futures of 2050 which are both resilient to external change and sustainable. The knowledge and procedures developed as part of this project will provide a foundation upon which planners and others involved in decision-making in relation to urban transport, at both local and national levels, can start to put in place the necessary changes to achieve the resilient and sustainable visions of 2050.The proposed research is ambitious and novel. We will undertake the first largely qualitative longitudinal panel study of households which focuses on their transport activity, in particular delving into questions of why they do certain things and how change might be brought about. This work will be complemented by study of historical information over longer periods of time, making use of available information from a variety of transport and non-transport databases, coupled with testimony from planners and others in two study areas who have experienced changes first hand. The task of bringing these diverse data sources together will be innovative and seek to effectively explore ways of integrating these materials in a number of different ways which recognise the complexity of decisions and practices around transport and allow us to draw some understanding of why step changes occur. We will use the results of these analyses to feed into more theoretical work which will consider firstly the potential for new planning procedures and practice and secondly new modelling tools which provide the means to help achieve the step changes necessary in transport for sustainable and resilient urban futures by 2050.

    visibility20
    visibilityviews20
    downloaddownloads158
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/J009733/1
    Funder Contribution: 406,787 GBP

    The peculiar behaviour of liquid and supercooled water has been baffling science for at least 236 years and is still seen as a major challenge facing chemistry today (Whitesides & Deutch, Nature 469, 21 (2011)). It was suggested that such strange behaviour might be caused by thermodynamic transitions, possibly even a second critical point. This second critical point would terminate a coexistence line between low- and high-density amorphous phases of water. Unfortunately, this second critical point (if it exists) and the associated polyamorphic liquid-liquid transition is difficult to study as it is thought to lie below the homogeneous nucleation temperature in a region known as "no man's land" (Angell, Science 319, 582 (2008)). In recent preliminary femtosecond optical Kerr-effect spectroscopy experiments, we have shown that water in concentrated eutectic solutions forms nanometre scale pools in which it retains many if not most of its bulk liquid characteristics. Most importantly, such solutions can be cooled to below 200 K without crystallisation (typically forming a glass at lower temperatures) allowing one to explore "no man's land" in detail for the first time. Preliminary experiments combining femtosecond spectroscopy with NMR diffusion measurements have shown that water in these pools undergoes a liquid-liquid transition as predicted for bulk water. Hence, it is proposed to use such nanopools as nanometre scale laboratories for the study of liquid and glassy water. A wide-ranging international collaboration has been set up to be able to study different critical aspects of the structure and dynamics of water. This includes cryogenic viscosity measurements, large dynamic-range (femtosecond to millisecond) optical Kerr-effect experiments, pulsed field gradient NMR, dielectric relaxation spectroscopy, terahertz time-domain spectroscopy, infrared pump-probe spectroscopy, and two-dimensional infrared spectroscopy. To ensure maximum impact of the experimental work, it is critical to have strong ties with experts in the theory and simulation of water and its thermodynamic behaviour. We have arranged collaboration with two international theory groups covering different aspects of the proposed work. Although the proposed research is relatively fundamental in nature, it will have impact as described in more detail elsewhere. The research addresses EPSRC priorities in nanoscience (supramolecular structures in liquids), energy (proton transport and liquid structuring in electrolytes for batteries and fuel cells), life sciences (the role of water in and on biomolecules), and the chemistry-chemical engineering interface (the role of the structuring of water in crystal nucleation). Our strong links with theory collaborators will ensure that fundamental insights will indeed propagate to the 'users' of such information. The close working relationship between the PI and CI has made Glasgow a centre of excellence in advanced femtosecond spectroscopy. This project exploits this expertise and international collaborations to immerse PDRAs and PGRSs in internationally leading research using state-of-the-art previously funded equipment.

    visibility8
    visibilityviews8
    downloaddownloads414
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/J502121/1
    Funder Contribution: 69,121 GBP

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at https://www.ukri.org/apply-for-funding/how-we-fund-studentships/. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

    more_vert
  • Funder: UKRI Project Code: EP/K008781/1
    Funder Contribution: 347,135 GBP

    Efficient air traffic management depends on reliable communications between aircraft and the air traffic control centres. However there is a lack of ground infrastructure in the Arctic to support communications via the standard VHF links (and over the Arctic Ocean such links are impossible) and communication via geostationary satellites is not possible above about 82 degrees latitude because of the curvature of the Earth. Thus for the high latitude flights it is necessary to use high frequency (HF) radio for communication. HF radio relies on reflections from the ionosphere to achieve long distance communication round the curve of the Earth. Unfortunately the high latitude ionosphere is affected by space weather disturbances that can disrupt communications. These disturbances originate with events on the Sun such as solar flares and coronal mass ejections that send out particles that are guided by the Earth's magnetic field into the regions around the poles. During such events HF radio communication can be severely disrupted and aircraft are forced to use longer low latitude routes with consequent increased flight time, fuel consumption and cost. Often, the necessity to land and refuel for these longer routes further increases the fuel consumption. The work described in this proposal cannot prevent the space weather disturbances and their effects on radio communication, but by developing a detailed understanding of the phenomena and using this to provide space weather information services the disruption to flight operations can be minimised. The occurrence of ionospheric disturbances and disruption of radio communication follows the 11-year cycle in solar activity. During the last peak in solar activity a number of events caused disruption of trans-Atlantic air routes. Disruptions to radio communications in recent years have been less frequent as we were at the low phase of the solar cycle. However, in the next few years there will be an upswing in solar activity that will produce a consequent increase in radio communications problems. The increased use of trans-polar routes and the requirement to handle greater traffic density on trans-Atlantic routes both mean that maintaining reliable high latitude communications will be even more important in the future.

    more_vert
  • Funder: UKRI Project Code: EP/K011588/1
    Funder Contribution: 255,173 GBP

    Differential geometry is the study of "smooth shapes", e.g. curved surfaces that have no rough edges or sharp bends. A surface is a 2-dimensional object, and one can similarly imagine smooth shapes that are 1-dimensional, such as a line, or curve, or circle. What is much harder to imagine, but can nonetheless be described in precise mathematical terms, is a smooth shape in an arbitrary number of dimensions: these objects are called "manifolds". A specific example of a 2-dimensional manifold is a disk, i.e. the region inside a circle, and its "boundary" is a 1-dimensional manifold, namely the circle. Similarly, for any positive integer n, an n-dimensional manifold may have a boundary which is an (n-1)-dimensional manifold. All the 3-dimensional manifolds that we can easily picture are of this type: e.g. if we imagine any surface in 3-dimensional space, such as a sphere or a "torus" (the shape of the surface of a doughnut), then the region inside that surface is a 3-dimensional manifold whose boundary is the surface. We can now ask one of the most basic questions concerning manifolds: given an n-dimensional manifold, is it the boundary of something? This is actually not just a geometric question, but really a question of "topology", which is a certain way of studying the "overall shape" of geometric objects. As in the example given above, most 2-dimensional manifolds that we can easily imagine are boundaries of the 3-dimensional regions they enclose. But for a more interesting example, we can try to imagine a "Klein bottle": this is a surface formed by taking an ordinary bottle and bending its opening around and through the glass into the inside, then connecting the opening to the floor of the bottle by curving the floor upward. The result is a surface that is not a boundary of anything, as its inside is not distinct from its outside; like a Moebius strip, but closed in on itself. The subject of this proposal concerns a more elaborate version of the above question about boundaries: we deal with a particular type of manifold in an even number of dimensions, called "symplectic" manifolds, and their odd-dimensional boundaries are called "contact" manifolds. The idea of a symplectic manifold comes originally from physics: a century ago, symplectic manifolds were understood to be the natural geometric setting in which to study Hamilton's 19th century reformulation of Newton's classical mechanics. Today symplectic manifolds are considered interesting in their own right, and they retain a connection to physics, but of a very different and non-classical sort: by studying certain special surfaces in symplectic manifolds with contact boundary, one can define a so-called "Symplectic Field Theory" (or "SFT" for short), which bears a strong but mysterious resemblance to some of the theories that modern physics uses to describe elementary particles and their interactions. Unlike those theories, SFT does not help us to predict what will happen in a particle accelerator, but it can help us answer a basic question in the area of "Symplectic and Contact Topology": given a contact manifold, is it the boundary of any symplectic manifold? More generally, one way to study contact manifolds themselves is to consider the following relation: we say that two such manifolds are "symplectically cobordant" if they form two separate pieces of the boundary of a symplectic manifold. The question of whether two given contact manifolds are cobordant helps us understand what kinds of contact manifolds can exist in the first place, and Symplectic Field Theory is one of the most powerful methods we have for studying this. The goal of this project is thus to use this and related tools to learn as much as we can about the symplectic cobordism relation on contact manifolds. Since most previous results on this subject have focused on 4-dimensional manifolds with 3-dimensional boundaries, we aim especially to gain new insights in higher dimensions.

    more_vert
  • Funder: UKRI Project Code: EP/J502030/1
    Funder Contribution: 345,605 GBP

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at https://www.ukri.org/apply-for-funding/how-we-fund-studentships/. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

    more_vert
  • Funder: UKRI Project Code: EP/K022830/1
    Funder Contribution: 237,733 GBP

    This proposal brings together a critical mass of scientists from the Universities of Cardiff, Lancaster, Liverpool and Manchester and clinicians from the Christie, Lancaster and Liverpool NHS Hospital Trusts with the complementary experience and expertise to advance the understanding, diagnosis and treatment of cervical, oesophageal and prostate cancers. Cervical and prostate cancer are very common and the incidence of oesophageal is rising rapidly. There are cytology, biopsy and endoscopy techniques for extracting tissue from individuals who are at risk of developing these diseases. However the analysis of tissue by the standard techniques is problematic and subjective. There is clearly a national and international need to develop more accurate diagnostics for these diseases and that is a primary aim of this proposal. Experiments will be conducted on specimens from all three diseases using four different infrared based techniques which have complementary strengths and weaknesses: hyperspectral imaging, Raman spectroscopy, a new instrument to be developed by combining atomic force microscopy with infrared spectroscopy and a scanning near field microscope recently installed on the free electron laser on the ALICE accelerator at Daresbury. The latter instrument has recently been shown to have considerable potential for the study of oesophageal cancer yielding images which show the chemical composition with unprecedented spatial resolution (0.1 microns) while hyperspectral imaging and Raman spectroscopy have been shown by members of the team to provide high resolution spectra that provide insight into the nature of cervical and prostate cancers. The new instrument will be installed on the free electron laser at Daresbury and will yield images on the nanoscale. This combination of techniques will allow the team to probe the physical and chemical structure of these three cancers with unprecedented accuracy and this should reveal important information about their character and the chemical processes that underlie their malignant behavior. The results of the research will be of interest to the study of cancer generally particularly if it reveals feature common to all three cancers. The infrared techniques have considerable medical potential and to differing extents are on the verge of finding practical applications. Newer terahertz techniques also have significant potential in this field and may be cheaper to implement. Unfortunately the development of cheap portable terahertz diagnositic instruments is being impeded by the weakness of existing sources of terahertz radiation. By exploiting the terahertz radiation from the ALICE accelerator, which is seven orders of magnitude more intense that conventional sources, the team will advance the design of two different terahertz instruments and assess their performance against the more developed infrared techniques in cancer diagnosis. However before any of these techniques can be used by medical professionals it is essential that their strengths and limitations of are fully understood. This is one of the objectives of the proposal and it will be realised by comparing the results of each technique in studies of specimens from the three cancers that are the primary focus of the research. This will be accompanied by developing data basis and algorithms for the automated analysis of spectral and imaging data thus removing subjectivity from the diagnostic procedure. Finally the team will explore a new approach to monitoring the interactions between pathogens, pharmaceuticals and relevant cells or tissues at the cellular and subcellular level using the instruments deployed on the free electron laser at Daresbury together with Raman microscopy. If this is successful, it will be important in the longer term in developing new treatments for cancer and other diseases.

    more_vert
  • Funder: UKRI Project Code: EP/J021709/1
    Funder Contribution: 329,399 GBP

    Methods for the formation of C-C and C-Y (Y = O, N) bonds are crucial for the synthesis of new molecules. In the last 30 years there have been huge advances in Pd-catalysed cross-coupling reactions and this was recognized in the award of the 2011 Nobel Prize. These reactions involve joining together two organic molecules, one of which features a bond between carbon and a halogen (a C-X bond) while the other coupling partner may feature a non-carbon centre such as tin, boron or zinc (a C-M bond). The coupling of these two partners to give a new C-C bond usually involves a palladium catalyst. More recent versions have coupled C-N or C-O bonds. These coupling reactions generally work well, however the efficiency of this individual step masks significant waste of time and energy, as well as problems with environmental sustainability. These problems arise because both C-X and C-M coupling partners ultimately derive from precursors that only contain C-H bonds and therefore require prior synthesis. This preactivation usually involves several steps, each with costly energy and purification implications. Moreover, the final coupling process itself eliminates salts (M-X) that must first of all be separated from the reaction products before disposal. This is a further costly and expensive process that often has a significant environmental impact. A far more desirable approach would be to use the unactivated C-H containing precursors directly as the coupling partners. Such compounds are readily available and cheap. This approach would circumvent the need for the costly and wasteful preactivation that is required to make C-X and M-C species, as well as the post processing clean up of M-X by-products. Until very recently this approach has not been adopted as C-H based precursors are usually rather chemically inert. However, catalysis based on such C-H species (catalytic C-H functionalisation) is now within reach, mainly due to recent advances where the means to activate the C-H bond with a transition metal catalyst have been understood. A key point in C-H functionalisation is to have a directing group elsewhere on the feedstock molecule so that it can interact with the metal catalyst and so bring the C-H bond close enough to react. The M-C bond that is thus formed can then undergo reactions with other substrates to produce the desired C-C, C-N or C-O bond. Moreover, if instead this new bond is formed with another atom in the same molecule then a ring is formed. Such cyclic compounds containing an N or O atom are called heterocyclic compounds and play a key role as major constituents of pharmaceuticals and agrochemicals. In addition, they often have interesting optical and electrical properties in their own right that are important in a range of technological applications. It is therefore crucial that the synthesis of heterocyclic compounds is as efficient as possible; moreover the need for a wide range of heterocycles with different properties depends upon the development of new, efficient methods for their synthesis. Although there is precedent for this type of catalytic C-H functionalisation in the scientific literature, to date there is little understanding of what controls this reactivity. Thus the range of species that can be made is limited, the catalysis is not yet efficient and the selectivity of the reaction is poorly understood. To improve this situation requires a deeper understanding of how these systems work. We aim to provide this here through a combination of experimental studies and computational modeling. By understanding the factors that control reactivity and selectivity we will be able to design new, more efficient catalysts and also to widen the scope of the catalytic C-H functionalisation methodology. The ultimate aim is to provide a flexible set of efficient synthetic tools that chemists will be able to use to make a wide range of important heterocycles in an environmentally sustainable manner.

    more_vert