Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
89 Projects

  • 2013-2022
  • UK Research and Innovation
  • OA Publications Mandate: No
  • 2010
  • 2016

10
arrow_drop_down
  • Funder: UKRI Project Code: BBS/E/F/00044433
    Funder Contribution: 1,228,590 GBP

    Sesquiterpenes are a structurally diverse family of plant natural products, prevalent among the solanaceous plants that are common in the diet such as tomatoes, potatoes, and peppers. While these compounds play critical roles in mediating ecological interactions between plants, insects and microbes, they also provide a rich source of high-value bioactives for human uses ranging from antibiotics, anticancer and anti-inflammatory agents, to flavours and fragrances. Though we ingest sesquiterpenes from dietary sources, little is known about how these compounds affect human microbes and microbial communities and the chemical ecology of the human gut. This gap in our knowledge will be addressed in the ISP. Initially, we will focus on a detailed mode of action study of capsidiol, an isoprenoid from peppers, and its bacteriostatic effect on the gut microbe Helicobacter pylori. These investigations will expand to consider the effects of capsidiol and related isoprenoid compounds on the gut microbial communities more broadly. To date, we have successfully isolated capsidiol from peppers, established several strains of H. pylori in the lab and conducted growth curve measurements. Additionally, we have evaluated the growth inhibitory activities of alpha-copaene from potatoes. The establishment of this experimental system and the successful pilot studies set the stage for metabolomics and transcriptomics studies to elucidate the manner in which isoprenoids in the diet perturb microbial metabolic function and gene expression. Subsequent studies will compare the action of a range of dietary (constitutive) sesquiterpenes, including alpha-copaene from potato varieties in collaboration with SCRI. Following targeted studies with H. pylori, we seek to study the effect of individual and mixtures of dietary phytochemicals on communities of commensal gut microorgansms, through close interactions with the IFR Gut ISP.

    more_vert
  • Funder: UKRI Project Code: ST/G000638/1
    Funder Contribution: 71,868 GBP

    Nuclear physics is being revolutionised by the development of new radioactive ion beam (RIB) accelerator facilities. The UK nuclear physics community has decided that the principal focus of its efforts will be the largest European facility, the FAIR (Facility for Anti-proton and Ion Research) complex being built in Darmstadt, Germany at the site of the present GSI. FAIR will provide unique opportunities in the fields of hadron-, nuclear-, atomic-, and laser physics, and applications. FAIR is to be built by an international consortium and will provide capabilities unmatched worldwide. It will be able to produce intense beams of all stable chemical elements up to uranium with energies in the range of 1 to 30 GeV per nucleon and also anti-protons. Beams of short-lived radioactive species will be generated in fragmentation/spallation and fission reactions. Such an in-flight facility has the advantages of being able to provide any isotope independently of the chemical properties of the element and the production process is fast, resulting in beams of the shortest-lived, and hence most exotic, nuclei. FAIR will be unique among the in-flight facilities in several ways: (i) experiments can be carried out with RIBs at high energies up to 2 GeV per nucleon; (ii) it will provide the purest radioactive beams for heavy nuclei; (iii) it will be the only facility in the world to have storage rings enabling a new and unique generation of experiments. NuSTAR (Nuclear Structure, Astrophysics and Reactions) is an 'umbrella' collaboration of >800 scientists from 146 institutions in 36 countries (Nov. 2007) focussing on nuclear physics experiments. It comprises nine different collaborations based around state-of-the art detector systems with the common aim to exploit the beams of short-lived radioactive species to study how the properties of nuclei and nuclear matter vary over a wide range of isospin, angular momentum, temperature and density. It will provide data on nuclear many-body systems under extreme conditions. The ultimate goal is to find a unified description of the properties of nuclei and nuclear matter. NuSTAR will be the first major project to realize the potential of the new accelerator facility and, in addition, some of its projects will benefit during the construction phase from the increased beam intensity from the ongoing upgrade to the existing accelerators which will be completed by 2009. NuSTAR will allow the UK Nuclear Physics Community to address many of the key questions in Nuclear Structure and Nuclear Astrophysics, outlined in the recent UK Nuclear Physics Strategy document. In particular the successful completion of the construction phase will permit the following fundamental questions to be considered: - What are the limits of nuclear existence? Where does the neutron-dripline lie? - Do new forms of collective motion occur far from the valley of nuclear stability? - Are there new forms of nuclear matter in very loosely bound nuclear systems? - How does the ordering of quantum states, with all of its consequent implications for nuclear structure and reactions, alter in highly dilute or neutron-rich matter? - Do symmetries seen in near-stable nuclei also appear far from stability and do we observe new symmetries? - How are the elements and isotopes found in the Universe formed? - Where are the sites of the r-process(es) of nucleosynthesis? - What is the nuclear equation of state for neutron stars? The present grant request is to support the UK involvement in NuSTAR at FAIR. Although there are 9 experimental collaborations in NuSTAR, the UK community has decided to concentrate its efforts on the six in which it has a scientific lead and where it can use its technical excellence and experience. It is planned that by 2013 we will be ready to fully utilise the range of beams available at FAIR and to continue our excellence and leadership in the area of nuclear structure physics and astrophysics.

    more_vert
  • Funder: UKRI Project Code: BB/H012702/1
    Funder Contribution: 918,084 GBP

    This project will address an important problem which has hampered the exploitation of the genetic diversity held within wild relatives of wheat. Being able to work with wild relatives so that beneficial characteristics can be introduced into wheat will be a major scientific achievement and dramatically improve the way breeders can generate new varieties of wheat with increased performance. Some wild relatives are adapted to thrive under different climatic conditions to that of domestic wheat, or they carry natural resistance to important diseases and/or carry other important characteristics which could influence yield. What we want to do is to produce the tools which will allow the exploitation of this diversity and genetically introduce these favourable characteristics into wheat. In doing so we will be enable wheat breeders to, amongst other things, improve wheat performance in a sustainable way, increase yield, introduce disease resistance and drought tolerance. In a small number of cases this has already been achieved. What stops other wild relatives being used? The reason is that similarity of gene order, particularly at the chromosome ends (telomeres), is necessary to allow the chromosomes to align efficiently and recombine during the process of meiosis. Without recombination there isn't the opportunity to introduce the genetic diversity of wild relatives into wheat. Recombination Is possible in some cases but many wild relatives have rearranged their chromosomes compared with wheat chromosomes, making gene transfer difficult, if not impossible, by recombination during meiosis. So how can we overcome this problem? What we want to do is to exploit special genes, known as gametocidal genes that are found in some wild species. These genes were discovered when breeding to produce wheat lines that had an additional segment of a chromosome from a wild relative, because some chromosomes from the wild relative were found to transmit preferentially to the offspring. These chromosomes have been termed 'cuckoo' chromosomes (or gametocidal chromosomes). Gametocidal genes on these chromosomes induce chromosomal breakages which frequently result in translocations, or exchanges, between the chromosomes of wheat and those of the wild species. This strategy provides a route for the transfer of genes from chromosomes of wild species into wheat. However it is laborious and requires extensive experience in cytogenetics. We want to be smarter in the use of this system and so we need to understand its biological basis therefore the aim of this project is to identify the genes responsible for controlling the gametocidal effect on the 4S chromosome of Aegilops sharonensis. All breeding is currently based on chromosome assortment and the ability of chromosomes to undergo meiotic recombination. Identifying the biological basis for the gametocidal effect will enable an alternative system to be more effectively exploited and deployed in plant breeding. This will ultimately enhance the genetic diversity in wheat and in particular the pool of wild species which can be exploited for wheat improvement.

    more_vert
  • Funder: UKRI Project Code: TS/I002170/1
    Funder Contribution: 477,743 GBP

    This project develops an approach, genomic selection, to increase the rate at which varieties of Spring barley are developed. This is a very important crop in national agriculture, particularly for the malting, brewing and distilling industries. It is important that the rate with which improved varieties are created is increased so that more effort can be placed by breeders on improving disease resistance while maintaining or increasing grain yield and grain quality, which remain of greatest importance to growers and end users.Genomic selection represents a way of predicting traits purely from genetic markers rather than by direct measurement. These predictions require that a set of plants is first measured for the target traits so that the effect of each marker can be estimated. However, after that, selection can occur for several generations purely on markers.Direct measurement of many traits can take much longer than a single growing season: seed must first be bulked up over several generations to provide a sufficient quantity for yield trials. In contrast, marker data can be collected within the generation time of any crop and is therefore much faster than conventional selection.Other approaches to plant breeding using genetic molecular markers have been in use for many years. In these, a very small numbers of markers with strong evidence of an affect on a trait are first identified. These are then tracked through the breeding programme. Genomic selection differs in that all available markers are used to predict traits: the more markers the better. The inclusion of all markers gives more accurate prediction of overall trait values even though the precise involvement of each marker is known with less certainty.Our study has four themes. Firstly, throughout the life of the project, we shall develop new statistical methods to establish relationships between very high numbers of genetic markers and traits. The methods we develop will be more focussed on the problems of plant breeding: most methods to date have been targeted at animal breeding. Secondly, we shall test methods which are available now using historical data available from to an existing Spring barley scheme. Results will be used immediately to make selections within this scheme. We expect to register new varieties from these selections within the five year life of the project.Next, we shall use results from the analysis of the historical data together with any early methodological developments we make to create crosses specifically to exploit genomic selection. These crosses may not necessarily be the typical crosses between two parents which are commonly used by breeders but may involve more complicated crossing schemes involving, for example four parents. Within the life of the project, we shall test whether this approach gives a greater response to selection that achieved by more conventional breeding, but there will be insufficient time to resister a new variety.Finally, we shall integrate results and methods from the first three phases to completely redesign the breeding programme to get the greatest advantage out of genomic selection.In short, we plan to develop a new approach to Spring barley breeding .Genomic selection could result in a fundamental change to the way crops are bred and enable targets for increased food production and environmental sustainability to be met. Compared to other temperate crops, Spring barley has a short generation time which make it well suited to develop and test these ideas, which may also be applicable to other crops.

    more_vert
  • Funder: UKRI Project Code: ST/I506088/1
    Funder Contribution: 76,672 GBP

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at https://www.ukri.org/apply-for-funding/how-we-fund-studentships/. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

    more_vert
  • Funder: UKRI Project Code: EP/H040536/1
    Funder Contribution: 5,997,920 GBP

    Energy efficient processes are increasingly key priorities for ICT companies with attention being paid to both ecological and economic drivers. Although in some cases the use of ICT can be beneficial to the environment (for example by reducing journeys and introducing more efficient business processes), countries are becoming increasingly aware of the very large growth in energy consumption of telecommunications companies. For instance in 2007 BT consumed 0.7% of the UK's total electricity usage. In particular, the predicted future growth in the number of connected devices, and the internet bandwidth of an order of magnitude or two is not practical if it leads to a corresponding growth in energy consumption. Regulations may therefore come soon, particularly if Governments mandate moves towards carbon neutrality. Therefore the applicants believe that this proposal is of great importance in seeking to establish the current limits on ICT performance due to known environmental concerns and then develop new ICT techniques to provide enhanced performance. In particular they believe that substantial advances can be achieved through the innovative use of renewable sources and the development of new architectures, protocols, and algorithms operating on hardware which will itself allows significant reductions in energy consumption. This will represent a significant departure from accepted practices where ICT services are provided to meet the growing demand, without any regard for the energy consequences of relative location of supply and demand. In this project therefore, we propose innovatively to consider optimised dynamic placement of ICT services, taking account of varying energy costs at producer and consumer. Energy consumption in networks today is typically highly confined in switching and routing centres. Therefore in the project we will consider block transmission of data between centres chosen for optimum renewable energy supply as power transmission losses will often make the shipping of power to cities (data centres/switching nodes in cities) unattractive. Variable renewable sources such as solar and wind pose fresh challenges in ICT installations and network design, and hence this project will also look at innovative methods of flexible power consumption of block data routers to address this effect. We tackle the challenge along three axes: (i) We seek to design a new generation of ICT infrastructure architectures by addressing the optimisation problem of placing compute and communication resources between the producer and consumer, with the (time-varying) constraint of minimising energy costs. Here the architectures will leverage the new hardware becoming available to allow low energy operation. (ii) We seek to design new protocols and algorithms to enable communications systems to adapt their speed and power consumption according to both the user demand and energy availability. (iii) We build on recent advances in hardware which allow the block routing of data at greatly reduced energy levels over electronic techniques and determine hardware configurations (using on chip monitoring for the first time) to support these dynamic energy and communications needs. Here new network components will be developed, leveraging for example recent significant advances made on developing lower power routing hardware with routing power levels of approximately 1 mW/Gb/s for ns block switching times. In order to ensure success, different companies will engage their expertise: BT, Ericsson, Telecom New Zealand, Cisco and BBC will play a key role in supporting the development of the network architectures, provide experimental support and traffic traces, and aid standards development. Solarflare, Broadcom, Cisco and the BBC will support our protocol and intelligent traffic solutions. Avago, Broadcom and Oclaro will play a key role in the hardware development.

    visibility219
    visibilityviews219
    downloaddownloads1,237
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/I012060/1
    Funder Contribution: 4,064,050 GBP

    Miniaturisation has become a familiar aspect of modern technology: every year, laptops get thinner, mobile phones get smaller, and computers get faster as more and more components can be accommodated on their chips. The emergence of nanoscience as a scientific discipline has been driven by the relentless quest by the electronic device industry over the past four decades for ever-faster chips. The importance of miniaturisation is not just in the fact that smaller devices can be packed more closely together, however: when objects become very small indeed, they sometimes acquire entirely new properties that larger objects formed from the same materials do not normally exhibit. Catalysts have been used for over a century to accelerate chemical reactions, and many catalysts consist of metal particles supported on ceramics. For several decades, catalytic converters in car exhausts have used metallic nanoparticles - particles a few billionths of a metre in size - to clean the exhaust gas because the catalytic activity has been found to be dramatically increased by the small size of the active metal. When semiconductors are formed into structures of the same size, they acquire entirely new optical properties purely as a consequence of their small size - for example, they glow brightly when stimulated by electrical current, and the colour of the light emitted is determined by the size of the particle (and can thus be controlled with high precision). These phenomena are referred to as low-dimensional ones: they are new, unexpected phenomena that result only from the small size of the active objects.There is a very important sense in which biological objects may also be said to be low-dimensional. Cells are tiny objects that are driven by processes that involve small numbers of molecules. Biologists have recognised that single molecules are quite different from large groups of molecules, and there has therefore been a lot of interest in studying them, because they may help us to understand much better how larger systems work. However, there are no established tools for building systems of interacting single molecules, what might be called low-dimensional systems . New tools are required to achieve this, and the goal of this programme will be to develop them.We wish to build a synthetic low-dimensional system, which will incorporate biological molecules and synthetic models for them, that replicates the photosynthetic pathway of a bacterium. Photosynthesis is the basis for all life on earth, so it has fundamental importance. However, there are important other motivations for studying the marvellously efficient processes by which biological organisms collect sunlight and use it to live, grow and reproduce. The current concerns about shortage of fossil fuels, and the problems associated with the carbon dioxide produced by burning them, make solar energy a highly attractive solution to many pressing problems. To best exploit the huge amount of solar energy that falls on the earth, even in colder climates like the UK, we may do well to learn from Nature. By building a ship-based system that replicates the photosynthetic behaviour of a biological organism, we will gain new insights into how Natural photosynthesis works. More than that, however, we will develop entirely new, biologically-inspired design principles that may be useful in understanding many other scientific and engineering problems. At a fundamental level, biological systems work quite differently from electronic devices: they are driven by complex signals, they are fuzzy and probabilistic, where microsystems are based on binary logic and are precisely determined. The construction of a functioning low-dimensional system that replicates a cellular pathway will require the adoption, in a man-made structure, of these very different design principles. If we can achieve this it may yield important new insights into how similar principles could be applied to other technologies.

    visibility532
    visibilityviews532
    downloaddownloads682
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: G1000729
    Funder Contribution: 1,992,330 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    visibility27
    visibilityviews27
    downloaddownloads74
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: G0902303
    Funder Contribution: 922,163 GBP

    Stroke, the world‘s second biggest killer, is most often due to a blockage of a brain blood vessel by blood clot. Drugs that dissolve clots or prevent them from forming improve the chance of recovery after stroke, but they also increase the chance of bleeding; when bleeds occur into the brain they are particularly severe. Most stroke patients need to take drugs that affect blood clotting at some point in their illness, ranging from potent ‘clot busting‘ drugs to less risky drugs like aspirin. If a doctor could reliably select which patients were helped rather than harmed by these drugs, this would be a big step forward. I hope to develop a method to predict which stroke patients are more likely to be harmed (by bleeding) than benefit (by avoiding forming blood clots) from medicines that affect clotting. I will use statistical methods to make predictions, and then explore the best way for doctors and patients to use them. This will lead to better decisions for each individual patient, and better treatment policies. This study will use the best information from existing methods as well as from newer technologies (e.g. blood tests and brain imaging) to ensure effective and personalised decisions for each stroke patient

    visibility3
    visibilityviews3
    downloaddownloads4
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: AH/I503617/1
    Funder Contribution: 68,577 GBP

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at https://www.ukri.org/apply-for-funding/how-we-fund-studentships/. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

    more_vert
Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
89 Projects
  • Funder: UKRI Project Code: BBS/E/F/00044433
    Funder Contribution: 1,228,590 GBP

    Sesquiterpenes are a structurally diverse family of plant natural products, prevalent among the solanaceous plants that are common in the diet such as tomatoes, potatoes, and peppers. While these compounds play critical roles in mediating ecological interactions between plants, insects and microbes, they also provide a rich source of high-value bioactives for human uses ranging from antibiotics, anticancer and anti-inflammatory agents, to flavours and fragrances. Though we ingest sesquiterpenes from dietary sources, little is known about how these compounds affect human microbes and microbial communities and the chemical ecology of the human gut. This gap in our knowledge will be addressed in the ISP. Initially, we will focus on a detailed mode of action study of capsidiol, an isoprenoid from peppers, and its bacteriostatic effect on the gut microbe Helicobacter pylori. These investigations will expand to consider the effects of capsidiol and related isoprenoid compounds on the gut microbial communities more broadly. To date, we have successfully isolated capsidiol from peppers, established several strains of H. pylori in the lab and conducted growth curve measurements. Additionally, we have evaluated the growth inhibitory activities of alpha-copaene from potatoes. The establishment of this experimental system and the successful pilot studies set the stage for metabolomics and transcriptomics studies to elucidate the manner in which isoprenoids in the diet perturb microbial metabolic function and gene expression. Subsequent studies will compare the action of a range of dietary (constitutive) sesquiterpenes, including alpha-copaene from potato varieties in collaboration with SCRI. Following targeted studies with H. pylori, we seek to study the effect of individual and mixtures of dietary phytochemicals on communities of commensal gut microorgansms, through close interactions with the IFR Gut ISP.

    more_vert
  • Funder: UKRI Project Code: ST/G000638/1
    Funder Contribution: 71,868 GBP

    Nuclear physics is being revolutionised by the development of new radioactive ion beam (RIB) accelerator facilities. The UK nuclear physics community has decided that the principal focus of its efforts will be the largest European facility, the FAIR (Facility for Anti-proton and Ion Research) complex being built in Darmstadt, Germany at the site of the present GSI. FAIR will provide unique opportunities in the fields of hadron-, nuclear-, atomic-, and laser physics, and applications. FAIR is to be built by an international consortium and will provide capabilities unmatched worldwide. It will be able to produce intense beams of all stable chemical elements up to uranium with energies in the range of 1 to 30 GeV per nucleon and also anti-protons. Beams of short-lived radioactive species will be generated in fragmentation/spallation and fission reactions. Such an in-flight facility has the advantages of being able to provide any isotope independently of the chemical properties of the element and the production process is fast, resulting in beams of the shortest-lived, and hence most exotic, nuclei. FAIR will be unique among the in-flight facilities in several ways: (i) experiments can be carried out with RIBs at high energies up to 2 GeV per nucleon; (ii) it will provide the purest radioactive beams for heavy nuclei; (iii) it will be the only facility in the world to have storage rings enabling a new and unique generation of experiments. NuSTAR (Nuclear Structure, Astrophysics and Reactions) is an 'umbrella' collaboration of >800 scientists from 146 institutions in 36 countries (Nov. 2007) focussing on nuclear physics experiments. It comprises nine different collaborations based around state-of-the art detector systems with the common aim to exploit the beams of short-lived radioactive species to study how the properties of nuclei and nuclear matter vary over a wide range of isospin, angular momentum, temperature and density. It will provide data on nuclear many-body systems under extreme conditions. The ultimate goal is to find a unified description of the properties of nuclei and nuclear matter. NuSTAR will be the first major project to realize the potential of the new accelerator facility and, in addition, some of its projects will benefit during the construction phase from the increased beam intensity from the ongoing upgrade to the existing accelerators which will be completed by 2009. NuSTAR will allow the UK Nuclear Physics Community to address many of the key questions in Nuclear Structure and Nuclear Astrophysics, outlined in the recent UK Nuclear Physics Strategy document. In particular the successful completion of the construction phase will permit the following fundamental questions to be considered: - What are the limits of nuclear existence? Where does the neutron-dripline lie? - Do new forms of collective motion occur far from the valley of nuclear stability? - Are there new forms of nuclear matter in very loosely bound nuclear systems? - How does the ordering of quantum states, with all of its consequent implications for nuclear structure and reactions, alter in highly dilute or neutron-rich matter? - Do symmetries seen in near-stable nuclei also appear far from stability and do we observe new symmetries? - How are the elements and isotopes found in the Universe formed? - Where are the sites of the r-process(es) of nucleosynthesis? - What is the nuclear equation of state for neutron stars? The present grant request is to support the UK involvement in NuSTAR at FAIR. Although there are 9 experimental collaborations in NuSTAR, the UK community has decided to concentrate its efforts on the six in which it has a scientific lead and where it can use its technical excellence and experience. It is planned that by 2013 we will be ready to fully utilise the range of beams available at FAIR and to continue our excellence and leadership in the area of nuclear structure physics and astrophysics.

    more_vert
  • Funder: UKRI Project Code: BB/H012702/1
    Funder Contribution: 918,084 GBP

    This project will address an important problem which has hampered the exploitation of the genetic diversity held within wild relatives of wheat. Being able to work with wild relatives so that beneficial characteristics can be introduced into wheat will be a major scientific achievement and dramatically improve the way breeders can generate new varieties of wheat with increased performance. Some wild relatives are adapted to thrive under different climatic conditions to that of domestic wheat, or they carry natural resistance to important diseases and/or carry other important characteristics which could influence yield. What we want to do is to produce the tools which will allow the exploitation of this diversity and genetically introduce these favourable characteristics into wheat. In doing so we will be enable wheat breeders to, amongst other things, improve wheat performance in a sustainable way, increase yield, introduce disease resistance and drought tolerance. In a small number of cases this has already been achieved. What stops other wild relatives being used? The reason is that similarity of gene order, particularly at the chromosome ends (telomeres), is necessary to allow the chromosomes to align efficiently and recombine during the process of meiosis. Without recombination there isn't the opportunity to introduce the genetic diversity of wild relatives into wheat. Recombination Is possible in some cases but many wild relatives have rearranged their chromosomes compared with wheat chromosomes, making gene transfer difficult, if not impossible, by recombination during meiosis. So how can we overcome this problem? What we want to do is to exploit special genes, known as gametocidal genes that are found in some wild species. These genes were discovered when breeding to produce wheat lines that had an additional segment of a chromosome from a wild relative, because some chromosomes from the wild relative were found to transmit preferentially to the offspring. These chromosomes have been termed 'cuckoo' chromosomes (or gametocidal chromosomes). Gametocidal genes on these chromosomes induce chromosomal breakages which frequently result in translocations, or exchanges, between the chromosomes of wheat and those of the wild species. This strategy provides a route for the transfer of genes from chromosomes of wild species into wheat. However it is laborious and requires extensive experience in cytogenetics. We want to be smarter in the use of this system and so we need to understand its biological basis therefore the aim of this project is to identify the genes responsible for controlling the gametocidal effect on the 4S chromosome of Aegilops sharonensis. All breeding is currently based on chromosome assortment and the ability of chromosomes to undergo meiotic recombination. Identifying the biological basis for the gametocidal effect will enable an alternative system to be more effectively exploited and deployed in plant breeding. This will ultimately enhance the genetic diversity in wheat and in particular the pool of wild species which can be exploited for wheat improvement.

    more_vert
  • Funder: UKRI Project Code: TS/I002170/1
    Funder Contribution: 477,743 GBP

    This project develops an approach, genomic selection, to increase the rate at which varieties of Spring barley are developed. This is a very important crop in national agriculture, particularly for the malting, brewing and distilling industries. It is important that the rate with which improved varieties are created is increased so that more effort can be placed by breeders on improving disease resistance while maintaining or increasing grain yield and grain quality, which remain of greatest importance to growers and end users.Genomic selection represents a way of predicting traits purely from genetic markers rather than by direct measurement. These predictions require that a set of plants is first measured for the target traits so that the effect of each marker can be estimated. However, after that, selection can occur for several generations purely on markers.Direct measurement of many traits can take much longer than a single growing season: seed must first be bulked up over several generations to provide a sufficient quantity for yield trials. In contrast, marker data can be collected within the generation time of any crop and is therefore much faster than conventional selection.Other approaches to plant breeding using genetic molecular markers have been in use for many years. In these, a very small numbers of markers with strong evidence of an affect on a trait are first identified. These are then tracked through the breeding programme. Genomic selection differs in that all available markers are used to predict traits: the more markers the better. The inclusion of all markers gives more accurate prediction of overall trait values even though the precise involvement of each marker is known with less certainty.Our study has four themes. Firstly, throughout the life of the project, we shall develop new statistical methods to establish relationships between very high numbers of genetic markers and traits. The methods we develop will be more focussed on the problems of plant breeding: most methods to date have been targeted at animal breeding. Secondly, we shall test methods which are available now using historical data available from to an existing Spring barley scheme. Results will be used immediately to make selections within this scheme. We expect to register new varieties from these selections within the five year life of the project.Next, we shall use results from the analysis of the historical data together with any early methodological developments we make to create crosses specifically to exploit genomic selection. These crosses may not necessarily be the typical crosses between two parents which are commonly used by breeders but may involve more complicated crossing schemes involving, for example four parents. Within the life of the project, we shall test whether this approach gives a greater response to selection that achieved by more conventional breeding, but there will be insufficient time to resister a new variety.Finally, we shall integrate results and methods from the first three phases to completely redesign the breeding programme to get the greatest advantage out of genomic selection.In short, we plan to develop a new approach to Spring barley breeding .Genomic selection could result in a fundamental change to the way crops are bred and enable targets for increased food production and environmental sustainability to be met. Compared to other temperate crops, Spring barley has a short generation time which make it well suited to develop and test these ideas, which may also be applicable to other crops.

    more_vert
  • Funder: UKRI Project Code: ST/I506088/1
    Funder Contribution: 76,672 GBP

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at https://www.ukri.org/apply-for-funding/how-we-fund-studentships/. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

    more_vert
  • Funder: UKRI Project Code: EP/H040536/1
    Funder Contribution: 5,997,920 GBP

    Energy efficient processes are increasingly key priorities for ICT companies with attention being paid to both ecological and economic drivers. Although in some cases the use of ICT can be beneficial to the environment (for example by reducing journeys and introducing more efficient business processes), countries are becoming increasingly aware of the very large growth in energy consumption of telecommunications companies. For instance in 2007 BT consumed 0.7% of the UK's total electricity usage. In particular, the predicted future growth in the number of connected devices, and the internet bandwidth of an order of magnitude or two is not practical if it leads to a corresponding growth in energy consumption. Regulations may therefore come soon, particularly if Governments mandate moves towards carbon neutrality. Therefore the applicants believe that this proposal is of great importance in seeking to establish the current limits on ICT performance due to known environmental concerns and then develop new ICT techniques to provide enhanced performance. In particular they believe that substantial advances can be achieved through the innovative use of renewable sources and the development of new architectures, protocols, and algorithms operating on hardware which will itself allows significant reductions in energy consumption. This will represent a significant departure from accepted practices where ICT services are provided to meet the growing demand, without any regard for the energy consequences of relative location of supply and demand. In this project therefore, we propose innovatively to consider optimised dynamic placement of ICT services, taking account of varying energy costs at producer and consumer. Energy consumption in networks today is typically highly confined in switching and routing centres. Therefore in the project we will consider block transmission of data between centres chosen for optimum renewable energy supply as power transmission losses will often make the shipping of power to cities (data centres/switching nodes in cities) unattractive. Variable renewable sources such as solar and wind pose fresh challenges in ICT installations and network design, and hence this project will also look at innovative methods of flexible power consumption of block data routers to address this effect. We tackle the challenge along three axes: (i) We seek to design a new generation of ICT infrastructure architectures by addressing the optimisation problem of placing compute and communication resources between the producer and consumer, with the (time-varying) constraint of minimising energy costs. Here the architectures will leverage the new hardware becoming available to allow low energy operation. (ii) We seek to design new protocols and algorithms to enable communications systems to adapt their speed and power consumption according to both the user demand and energy availability. (iii) We build on recent advances in hardware which allow the block routing of data at greatly reduced energy levels over electronic techniques and determine hardware configurations (using on chip monitoring for the first time) to support these dynamic energy and communications needs. Here new network components will be developed, leveraging for example recent significant advances made on developing lower power routing hardware with routing power levels of approximately 1 mW/Gb/s for ns block switching times. In order to ensure success, different companies will engage their expertise: BT, Ericsson, Telecom New Zealand, Cisco and BBC will play a key role in supporting the development of the network architectures, provide experimental support and traffic traces, and aid standards development. Solarflare, Broadcom, Cisco and the BBC will support our protocol and intelligent traffic solutions. Avago, Broadcom and Oclaro will play a key role in the hardware development.

    visibility219
    visibilityviews219
    downloaddownloads1,237
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/I012060/1
    Funder Contribution: 4,064,050 GBP

    Miniaturisation has become a familiar aspect of modern technology: every year, laptops get thinner, mobile phones get smaller, and computers get faster as more and more components can be accommodated on their chips. The emergence of nanoscience as a scientific discipline has been driven by the relentless quest by the electronic device industry over the past four decades for ever-faster chips. The importance of miniaturisation is not just in the fact that smaller devices can be packed more closely together, however: when objects become very small indeed, they sometimes acquire entirely new properties that larger objects formed from the same materials do not normally exhibit. Catalysts have been used for over a century to accelerate chemical reactions, and many catalysts consist of metal particles supported on ceramics. For several decades, catalytic converters in car exhausts have used metallic nanoparticles - particles a few billionths of a metre in size - to clean the exhaust gas because the catalytic activity has been found to be dramatically increased by the small size of the active metal. When semiconductors are formed into structures of the same size, they acquire entirely new optical properties purely as a consequence of their small size - for example, they glow brightly when stimulated by electrical current, and the colour of the light emitted is determined by the size of the particle (and can thus be controlled with high precision). These phenomena are referred to as low-dimensional ones: they are new, unexpected phenomena that result only from the small size of the active objects.There is a very important sense in which biological objects may also be said to be low-dimensional. Cells are tiny objects that are driven by processes that involve small numbers of molecules. Biologists have recognised that single molecules are quite different from large groups of molecules, and there has therefore been a lot of interest in studying them, because they may help us to understand much better how larger systems work. However, there are no established tools for building systems of interacting single molecules, what might be called low-dimensional systems . New tools are required to achieve this, and the goal of this programme will be to develop them.We wish to build a synthetic low-dimensional system, which will incorporate biological molecules and synthetic models for them, that replicates the photosynthetic pathway of a bacterium. Photosynthesis is the basis for all life on earth, so it has fundamental importance. However, there are important other motivations for studying the marvellously efficient processes by which biological organisms collect sunlight and use it to live, grow and reproduce. The current concerns about shortage of fossil fuels, and the problems associated with the carbon dioxide produced by burning them, make solar energy a highly attractive solution to many pressing problems. To best exploit the huge amount of solar energy that falls on the earth, even in colder climates like the UK, we may do well to learn from Nature. By building a ship-based system that replicates the photosynthetic behaviour of a biological organism, we will gain new insights into how Natural photosynthesis works. More than that, however, we will develop entirely new, biologically-inspired design principles that may be useful in understanding many other scientific and engineering problems. At a fundamental level, biological systems work quite differently from electronic devices: they are driven by complex signals, they are fuzzy and probabilistic, where microsystems are based on binary logic and are precisely determined. The construction of a functioning low-dimensional system that replicates a cellular pathway will require the adoption, in a man-made structure, of these very different design principles. If we can achieve this it may yield important new insights into how similar principles could be applied to other technologies.

    visibility532
    visibilityviews532
    downloaddownloads682
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: G1000729
    Funder Contribution: 1,992,330 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    visibility27
    visibilityviews27
    downloaddownloads74
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: G0902303
    Funder Contribution: 922,163 GBP

    Stroke, the world‘s second biggest killer, is most often due to a blockage of a brain blood vessel by blood clot. Drugs that dissolve clots or prevent them from forming improve the chance of recovery after stroke, but they also increase the chance of bleeding; when bleeds occur into the brain they are particularly severe. Most stroke patients need to take drugs that affect blood clotting at some point in their illness, ranging from potent ‘clot busting‘ drugs to less risky drugs like aspirin. If a doctor could reliably select which patients were helped rather than harmed by these drugs, this would be a big step forward. I hope to develop a method to predict which stroke patients are more likely to be harmed (by bleeding) than benefit (by avoiding forming blood clots) from medicines that affect clotting. I will use statistical methods to make predictions, and then explore the best way for doctors and patients to use them. This will lead to better decisions for each individual patient, and better treatment policies. This study will use the best information from existing methods as well as from newer technologies (e.g. blood tests and brain imaging) to ensure effective and personalised decisions for each stroke patient

    visibility3
    visibilityviews3
    downloaddownloads4
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: AH/I503617/1
    Funder Contribution: 68,577 GBP

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at https://www.ukri.org/apply-for-funding/how-we-fund-studentships/. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

    more_vert