Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
1,173 Projects, page 1 of 118

  • UK Research and Innovation
  • UKRI|EPSRC
  • 2016

10
arrow_drop_down
  • Funder: UKRI Project Code: EP/J009733/1
    Funder Contribution: 406,787 GBP
    Partners: National University Paris ENS, BU, University of Glasgow, UNIME, University of Rome III (Tre)

    The peculiar behaviour of liquid and supercooled water has been baffling science for at least 236 years and is still seen as a major challenge facing chemistry today (Whitesides & Deutch, Nature 469, 21 (2011)). It was suggested that such strange behaviour might be caused by thermodynamic transitions, possibly even a second critical point. This second critical point would terminate a coexistence line between low- and high-density amorphous phases of water. Unfortunately, this second critical point (if it exists) and the associated polyamorphic liquid-liquid transition is difficult to study as it is thought to lie below the homogeneous nucleation temperature in a region known as "no man's land" (Angell, Science 319, 582 (2008)). In recent preliminary femtosecond optical Kerr-effect spectroscopy experiments, we have shown that water in concentrated eutectic solutions forms nanometre scale pools in which it retains many if not most of its bulk liquid characteristics. Most importantly, such solutions can be cooled to below 200 K without crystallisation (typically forming a glass at lower temperatures) allowing one to explore "no man's land" in detail for the first time. Preliminary experiments combining femtosecond spectroscopy with NMR diffusion measurements have shown that water in these pools undergoes a liquid-liquid transition as predicted for bulk water. Hence, it is proposed to use such nanopools as nanometre scale laboratories for the study of liquid and glassy water. A wide-ranging international collaboration has been set up to be able to study different critical aspects of the structure and dynamics of water. This includes cryogenic viscosity measurements, large dynamic-range (femtosecond to millisecond) optical Kerr-effect experiments, pulsed field gradient NMR, dielectric relaxation spectroscopy, terahertz time-domain spectroscopy, infrared pump-probe spectroscopy, and two-dimensional infrared spectroscopy. To ensure maximum impact of the experimental work, it is critical to have strong ties with experts in the theory and simulation of water and its thermodynamic behaviour. We have arranged collaboration with two international theory groups covering different aspects of the proposed work. Although the proposed research is relatively fundamental in nature, it will have impact as described in more detail elsewhere. The research addresses EPSRC priorities in nanoscience (supramolecular structures in liquids), energy (proton transport and liquid structuring in electrolytes for batteries and fuel cells), life sciences (the role of water in and on biomolecules), and the chemistry-chemical engineering interface (the role of the structuring of water in crystal nucleation). Our strong links with theory collaborators will ensure that fundamental insights will indeed propagate to the 'users' of such information. The close working relationship between the PI and CI has made Glasgow a centre of excellence in advanced femtosecond spectroscopy. This project exploits this expertise and international collaborations to immerse PDRAs and PGRSs in internationally leading research using state-of-the-art previously funded equipment.

  • Funder: UKRI Project Code: EP/M508366/1
    Funder Contribution: 123,967 GBP
    Partners: University of Oxford

    Quantum key distribution (QKD) is a cryptographic scheme which provides an unprecedented level of data security. This can be used to prevent data breaches such as ATM 'Skimming' attacks. Our project seeks to develop practical application of QKD in securing short-range wireless communication between a terminal such as an ATM and a handheld device (e.g. mobile phone). Our consortium, Nokia R&D UK Ltd., Alpha Contract Engineering (ACE) and University of Oxford have identified the 3 main barriers to commercialisation, namely, the lack of low-cost optical wireless steering techniques, high cost barrier to complex optical assembly for quantum receivers and the lack of mass-manufacturable single photon detector (SPD) arrays on CMOS platform. A fast and precise optical steering device (University of Oxford) that directs single photons from a handheld device to a quantum receiver will be developed. Testing of individual system components will be carried out. In particular, miniaturised and simplified optical assemblies using existing UK manufacturing capability will be researched, built and tested for QKD use (ACE). Critical parameters of SPD arrays on scalable CMOS platform will be measured (University of Oxford) and used in detailed simulation and modelling to select the best suited steering method. Finally, a prototype wireless quantum link will be built (Nokia & University of Oxford) with simplified optics (ACE) to demonstrate the feasibility of secure quantum wireless transactions.

  • Funder: UKRI Project Code: EP/K011693/1
    Funder Contribution: 300,568 GBP
    Partners: Lancaster University, INTRACOM Holdings SA, NCSR Demokritos, Nokia Siemens Networks

    It is reported that the total energy consumed by the ICT infrastructure of wireless and wired networks takes up over 3 percent of the worldwide electric energy consumption that generated 2 percent of the worldwide CO2 emissions nowadays. It is predicted that in the future a major portion of expanding traffic volumes will be in wireless side. Furthermore, future wireless network systems (e.g., 4G/B4G) are increasingly demanded as broadband and high-speed tailored to support reliable Quality of Service (QoS) for numerous multimedia applications. With explosive growth of high-rate multimedia applications (e.g. HDTV and 3DTV), more and more energy will be consumed in wireless networks to meet the QoS requirements. Specifically, it is predicted that footprint of mobile wireless communications could almost triple from 2007 to 2020 corresponding to more than one-third of the present annual emissions of the whole UK. Therefore, energy-efficient green wireless communications are paid increasing attention given the limited energy resources and environment-friendly transmission requirements globally. The aim of this project is to improve the joint spectrum and energy efficiency of future wireless network systems using cognitive radio technology along with innovative game-theoretic resource scheduling methods, efficient cross-layer designs and contemporary clinical findings. We plan to consider the health and environmental concerns to introduce power-efficient resource scheduling designs that intelligently exploit the available wireless resources in next-generation systems. Our efforts will leverage applications of cognitive radio techniques to situational awareness of the communications system with adaptive power control and dynamic spectrum allocation. This project will underpin the UK green communication technology by designing environment-friendly joint power and spectrum efficient wireless communication systems.

  • Funder: UKRI Project Code: EP/J002933/1
    Funder Contribution: 461,898 GBP
    Partners: University of Leeds

    FORWARN aims to create a Forward Collision Warning (FCW) system that is able to consider driver distraction when making decisions on the appropriateness and timing of warnings. To achieve this, drivers will be asked to engage in a variety of distracting tasks in simulated driving scenarios requiring the engagement of a FCW. The FCW will later be 'trained' to ascertain driver distraction using vehicle- and driver-related metrics. The research proposed here aims to bridge the gap between work on assistance systems and work on the impact of driver distractions, by understanding the relationship between distraction, warnings and driver performance. This research will examine the effect of a variety of in-vehicle distracting tasks on driving performance, and establish how these can then be taken into account when designing an advanced driver assistance system such as FCW. A particular focus of this research will be to gain a better understanding of the distracting effect of non-visual tasks, such as engagement in hands free mobile phone conversations. FCW uses sensors and radar to scan the area ahead of the vehicle, and aims to avoid rear-end collisions, or reduce their impact, by advising drivers to brake. Some newer systems even intervene in some cases to avoid a collision. There are considerable potential benefits of such systems which have recently been proven in a large-scale Field Operational Test (FOT) in North America. However, there is a danger that systems which have permanently fixed criteria will be viewed by a significant number of drivers as presenting too many "false" (unwanted) warnings. Indeed, drivers in the U.S. Field Operational Test were keen to be able to tune the system to their personal preferences. Therefore, one main aim of the proposed project is to use eye tracking and vehicle related performance measures to identify the information that is needed by a FCW before it can establish whether or not a driver is distracted. Upon approach to a hazardous condition, this intelligent FCW will then only be triggered after if it has ascertained that the driver is truly distracted and unable to respond to the hazard in good time. As driving is a multi-faceted activity, assessing the effects of distraction on driving performance depend on the exact driver- and vehicle-related metrics being observed as well as the nature of the distracting task itself. This project will build upon the work already conducted by the group in this area during previous European projects such as AIDE (Adaptive Integrated Driver-vehicle interfacE) and HASTE (Human machine interface And the Safety of Traffic in Europe) and a recently completed EPSRC project, EASY (Effects of Automated Systems on safetY).

  • Funder: UKRI Project Code: EP/J020915/1
    Funder Contribution: 583,832 GBP
    Partners: UPM, Imperial College London, UCLH, AIT

    Argumentation provides a powerful mechanism for dealing with incomplete, possibly inconsistent information and for the resolution of conflicts and differences of opinion amongst different parties. Further, it is useful for justifying outcomes. Thus, argumentation can support several aspects of decision-making, either by individual entities performing critical thinking (needing to evaluate pros and cons of conflicting decisions) or by multiple entities dialectically engaged to come to mutually agreeable decisions (needing to assess the validity of information the entities become aware of and resolve conflicts), especially when decisions need to be transparently justified (e.g. in medicine). Because of its potential to support decision-making when transparently justifying decisions is essential, the use of argumentation has been considered in a number of settings, including medicine, law, e-procurement, e-business and design rationale in engineering. Potential users of existing argumentation-based decision-making methods are empowered by transparent methods, afforded by argumentation, but lack either means of formal evaluation sanctioning decisions as (individually or collectively) rational or a computational framework for supporting automation. The combination of these three features (transparency, rationality and computational tools for automation) is essential for argumentation-based decision-making to have a fruitful impact on applications. Indeed, for example, a medical practitioner would not find a "black-box" recommended decision useful, but he/she would also not trust a fully transparent, dialectically justified decision unless he/she were sure that this is the best one (rational). In addition, the plethora of information doctors need to take into account nowadays to make decisions requires automated support. TRaDAr aims at providing methods and prototype systems for various kinds of argumentation-based (individual and collaborative) decision-making that generate automatically transparent, rational decisions, while developing case studies in smart electricity and e-health to inform and validate methods and systems. In this context, TRaDAr's technical objectives are: (O1) to provide novel argumentation-based formulations of decision problems for individual and collaborative decision-making; (O2) to study formal properties of the formulations at (O1), sanctioning the rationality of decisions; (O3) to provide real-world case studies in smart electricity and e-health for (individual and collaborative) decision-making, using the formulations at (O1) and demonstrating the importance of the properties at (O2) as well as the transparent nature of argumentation-based decision-making; (O4) to define provably correct algorithms for the formulations at (O1), supporting rational and transparent (individual and collaborative) decision-making; (O5) to implement prototype systems incorporating the computational methods at (O4), and use these systems to demonstrate the methodology at (O1-O2) for the case studies at (O3). The project intends to develop novel techniques within an existing framework of computational argumentation, termed assumption-based argumentation, towards the achievements of these objectives, and adapting notions and techniques from classical (quantitative) decision theory and mechanism design in economics. The envisaged TRaDAr's methodology and systems will contribute to a sustainable society supported by the digital economy, and in particular they will support people in making informed choices. The project will focus on demonstrating the proposed techniques in specific case studies (smart electricity and e-health for breast cancer) in two chosen application areas (digital economy and e-health), but its outcomes could be far-reaching into other case studies (e.g. in other areas of medicine) as well as other sectors (e.g. in engineering, for supporting decisions on design choices).

  • Funder: UKRI Project Code: EP/N023986/1
    Funder Contribution: 19,354 GBP
    Partners: University of Leeds

    We are applying for funding to hold a workshop in algebraic Lie Theory from 4-4-2016 until 8-4-2016 at the University of Edinburgh. The three areas covered are finite W-algebras; representation theory and invariant theory of reductive groups and their Lie algebras; and representation theory of symplectic singularities. We want to bring together about 40 researchers, including top-level international experts, leading researchers, postdocs and PhD students.

  • Funder: UKRI Project Code: EP/J021709/1
    Funder Contribution: 329,399 GBP
    Partners: University of Leicester

    Methods for the formation of C-C and C-Y (Y = O, N) bonds are crucial for the synthesis of new molecules. In the last 30 years there have been huge advances in Pd-catalysed cross-coupling reactions and this was recognized in the award of the 2011 Nobel Prize. These reactions involve joining together two organic molecules, one of which features a bond between carbon and a halogen (a C-X bond) while the other coupling partner may feature a non-carbon centre such as tin, boron or zinc (a C-M bond). The coupling of these two partners to give a new C-C bond usually involves a palladium catalyst. More recent versions have coupled C-N or C-O bonds. These coupling reactions generally work well, however the efficiency of this individual step masks significant waste of time and energy, as well as problems with environmental sustainability. These problems arise because both C-X and C-M coupling partners ultimately derive from precursors that only contain C-H bonds and therefore require prior synthesis. This preactivation usually involves several steps, each with costly energy and purification implications. Moreover, the final coupling process itself eliminates salts (M-X) that must first of all be separated from the reaction products before disposal. This is a further costly and expensive process that often has a significant environmental impact. A far more desirable approach would be to use the unactivated C-H containing precursors directly as the coupling partners. Such compounds are readily available and cheap. This approach would circumvent the need for the costly and wasteful preactivation that is required to make C-X and M-C species, as well as the post processing clean up of M-X by-products. Until very recently this approach has not been adopted as C-H based precursors are usually rather chemically inert. However, catalysis based on such C-H species (catalytic C-H functionalisation) is now within reach, mainly due to recent advances where the means to activate the C-H bond with a transition metal catalyst have been understood. A key point in C-H functionalisation is to have a directing group elsewhere on the feedstock molecule so that it can interact with the metal catalyst and so bring the C-H bond close enough to react. The M-C bond that is thus formed can then undergo reactions with other substrates to produce the desired C-C, C-N or C-O bond. Moreover, if instead this new bond is formed with another atom in the same molecule then a ring is formed. Such cyclic compounds containing an N or O atom are called heterocyclic compounds and play a key role as major constituents of pharmaceuticals and agrochemicals. In addition, they often have interesting optical and electrical properties in their own right that are important in a range of technological applications. It is therefore crucial that the synthesis of heterocyclic compounds is as efficient as possible; moreover the need for a wide range of heterocycles with different properties depends upon the development of new, efficient methods for their synthesis. Although there is precedent for this type of catalytic C-H functionalisation in the scientific literature, to date there is little understanding of what controls this reactivity. Thus the range of species that can be made is limited, the catalysis is not yet efficient and the selectivity of the reaction is poorly understood. To improve this situation requires a deeper understanding of how these systems work. We aim to provide this here through a combination of experimental studies and computational modeling. By understanding the factors that control reactivity and selectivity we will be able to design new, more efficient catalysts and also to widen the scope of the catalytic C-H functionalisation methodology. The ultimate aim is to provide a flexible set of efficient synthetic tools that chemists will be able to use to make a wide range of important heterocycles in an environmentally sustainable manner.

  • Funder: UKRI Project Code: EP/M014134/1
    Funder Contribution: 97,162 GBP
    Partners: NTU

    Asphalt pavements are the most commonly road pavements in the UK. Preserving them in a proper state fundamentally affects the economy and quality of life. However, their surveillance and maintenance are cost and time intensive, and asphalt concrete still has to be replaced after 15 years of use. Applying induction heating into the road could make pavements last much longer by stimulating the asphalt`s property of self-healing. Experimental results have found that a crack can be fully induction-healed, for at least 5 times. The efficiency of self-healing, however, depends on the temperature of the material and the temperature should be concentrated in the cracks alone. Thus, the challenge of this research is to discover how to apply energy only locally into the cracks without dispersing energy into undesired spaces. With this purpose, experimental and mathematical models of asphalt concrete self-healing under induction heating will be developed. This research will serve to understand the relationships between induction heating, the particles used to heat the mixture, the heat flow through asphalt concrete and its effect on asphalt self-healing. We will discover the type of particles, intensities and frequencies of induction heating which are more appropriate for healing, how to concentrate the heat in the damaged areas and the relationship between the amount of energy induced and the healing of asphalt concrete.

  • Funder: UKRI Project Code: EP/N508603/1
    Funder Contribution: 148,054 GBP
    Partners: University of Strathclyde

    Our concept of a distributed electrical and environmental sensor system to enable unprecedented flexibility and reduction of cost in deploying innovative measurement, control and protection functions for the power network requires to be proven in the context of relevant industry standards, with particular emphasis on current and voltage measurements. Consequently, the core research idea of this proposal is to assess the feasibility of this undertaking through systematic research and implementation of a range of innovative error compensation methods. In particular, the feasibility study will aim to demonstrate that metering and protection accuracy classes for voltage and current transducers are attainable by this technology. In order to address the objectives of the project, the research programme will be subdivided into specific work packages. The scope and methodologies adopted with respect to the individual tasks are described in the Case for Support attachment under the following work packages: WP1. Engagement with stakeholders (Month 1-12) WP2. Design and simulation of transducers and experiments. (Month 1-7) WP3. Assembly and packaging of electrical current and voltage transducers. (Month 4-7) WP4. Characterisation and environmental/high-voltage stress testing of transducers (Month 7-12) WP5. Development and testing of sensor interrogation hardware and software. (Month 1-12)

  • Project . 2013 - 2016
    Funder: UKRI Project Code: EP/K020323/1
    Funder Contribution: 994,065 GBP
    Partners: URT Group Ltd, University of London

    WAM is a project which started from asking a question about what would make a transformational difference to someone who is experiencing difficulties in walking. The answer was to be able to walk without visible (or audible) assistance. Following some initial work in an EPSRC project called RELEASE, WAM is starting on the road to developing just this sort of assistive technology: an exoskeleton that can be worn and that can also act as a muscle so that it can support the whole walking cycle, providing support and control to the user and enabling them to walk otherwise unaided. We have selected some of the likely possibilities from those explored during the RELEASE project and WAM will develop these further, combine them and test them against the strength, stiffness, flexion and strain requirements of the walking process. Three technologies will be explored in parallel: (1) using Vanadium Oxide (V2O5) as a chemical actuator, (2) using magnetic gels as a dynamic controllable mechanism and (3) using interlockable ceramic tiles as a surface medium. V2O5 is able to flex when exposed to an electrostatic potential and can exhibit strength (about 10 times the strength found in skeletal muscle) so this would seem to be a useful substance to use as the basis for an actuator. Macroporous magnetic gels can be used to compress rapidly under a magnetic field to deliver drugs (by squeezing the drugs from the pores as the material compresses under the influence of an induced magnetic field). Interlockable ceramic tiles can provide the stiffness needed for the rigidity needed by a skeleton, but once unlocked an allow the structure to bend in a required direction. These will be tested separately and in combination to see if the V2O5 working with the magnetic gel could act as a sufficiently strong actuator and key for the locking/unlocking mechanism so that the material can demonstrate sufficient strength, stiffness and strain capabilities to be worth scaling up in a future project to assist walking. Other possibilities would also be available from such material - it does not have to be used only for walking as it could be used for other joints which can need support but which also need to bend - elbow, wrist, ankle as well as knee are all candidates for such support. Also, it might provide an interesting support where it is desirable to make the assistance variable - when the person needs support and when they would benefit from being encouraged to take on the activity themselves. A variably flexible material of this sort would therefore be of use in conditions such as limb fractures (where absolutely fixed support is essential at one point on the process, but rehabilitation of associated muscles would be beneficial as the facture is healing, but is still weak, before the fixed support can be removed) or conditions such as Carpal Tunnel Syndrome where support needs might vary. While the technological work is underway we will be working with a patients' group and a group of clinicians to understand more about what end users might be looking for in their assistive technology and how this particular type of support might be useful for them. It is important to realise that this is a novel way of providing dynamic support for activities such as walking and thus there is a sense of all sides needing to understand how best to use the technology as it emerges from the laboratory. The present project will not deliver the full working prototype of a walking support system, but it will develop, test and show what can be done in terms of the material and its control system and the extent to which this approach to actuation of locomotory support could be achieved. The final tests will show how much stiffness and strength it can deliver and thus whether or not this is the right way to proceed in further projects.

Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
1,173 Projects, page 1 of 118
  • Funder: UKRI Project Code: EP/J009733/1
    Funder Contribution: 406,787 GBP
    Partners: National University Paris ENS, BU, University of Glasgow, UNIME, University of Rome III (Tre)

    The peculiar behaviour of liquid and supercooled water has been baffling science for at least 236 years and is still seen as a major challenge facing chemistry today (Whitesides & Deutch, Nature 469, 21 (2011)). It was suggested that such strange behaviour might be caused by thermodynamic transitions, possibly even a second critical point. This second critical point would terminate a coexistence line between low- and high-density amorphous phases of water. Unfortunately, this second critical point (if it exists) and the associated polyamorphic liquid-liquid transition is difficult to study as it is thought to lie below the homogeneous nucleation temperature in a region known as "no man's land" (Angell, Science 319, 582 (2008)). In recent preliminary femtosecond optical Kerr-effect spectroscopy experiments, we have shown that water in concentrated eutectic solutions forms nanometre scale pools in which it retains many if not most of its bulk liquid characteristics. Most importantly, such solutions can be cooled to below 200 K without crystallisation (typically forming a glass at lower temperatures) allowing one to explore "no man's land" in detail for the first time. Preliminary experiments combining femtosecond spectroscopy with NMR diffusion measurements have shown that water in these pools undergoes a liquid-liquid transition as predicted for bulk water. Hence, it is proposed to use such nanopools as nanometre scale laboratories for the study of liquid and glassy water. A wide-ranging international collaboration has been set up to be able to study different critical aspects of the structure and dynamics of water. This includes cryogenic viscosity measurements, large dynamic-range (femtosecond to millisecond) optical Kerr-effect experiments, pulsed field gradient NMR, dielectric relaxation spectroscopy, terahertz time-domain spectroscopy, infrared pump-probe spectroscopy, and two-dimensional infrared spectroscopy. To ensure maximum impact of the experimental work, it is critical to have strong ties with experts in the theory and simulation of water and its thermodynamic behaviour. We have arranged collaboration with two international theory groups covering different aspects of the proposed work. Although the proposed research is relatively fundamental in nature, it will have impact as described in more detail elsewhere. The research addresses EPSRC priorities in nanoscience (supramolecular structures in liquids), energy (proton transport and liquid structuring in electrolytes for batteries and fuel cells), life sciences (the role of water in and on biomolecules), and the chemistry-chemical engineering interface (the role of the structuring of water in crystal nucleation). Our strong links with theory collaborators will ensure that fundamental insights will indeed propagate to the 'users' of such information. The close working relationship between the PI and CI has made Glasgow a centre of excellence in advanced femtosecond spectroscopy. This project exploits this expertise and international collaborations to immerse PDRAs and PGRSs in internationally leading research using state-of-the-art previously funded equipment.

  • Funder: UKRI Project Code: EP/M508366/1
    Funder Contribution: 123,967 GBP
    Partners: University of Oxford

    Quantum key distribution (QKD) is a cryptographic scheme which provides an unprecedented level of data security. This can be used to prevent data breaches such as ATM 'Skimming' attacks. Our project seeks to develop practical application of QKD in securing short-range wireless communication between a terminal such as an ATM and a handheld device (e.g. mobile phone). Our consortium, Nokia R&D UK Ltd., Alpha Contract Engineering (ACE) and University of Oxford have identified the 3 main barriers to commercialisation, namely, the lack of low-cost optical wireless steering techniques, high cost barrier to complex optical assembly for quantum receivers and the lack of mass-manufacturable single photon detector (SPD) arrays on CMOS platform. A fast and precise optical steering device (University of Oxford) that directs single photons from a handheld device to a quantum receiver will be developed. Testing of individual system components will be carried out. In particular, miniaturised and simplified optical assemblies using existing UK manufacturing capability will be researched, built and tested for QKD use (ACE). Critical parameters of SPD arrays on scalable CMOS platform will be measured (University of Oxford) and used in detailed simulation and modelling to select the best suited steering method. Finally, a prototype wireless quantum link will be built (Nokia & University of Oxford) with simplified optics (ACE) to demonstrate the feasibility of secure quantum wireless transactions.

  • Funder: UKRI Project Code: EP/K011693/1
    Funder Contribution: 300,568 GBP
    Partners: Lancaster University, INTRACOM Holdings SA, NCSR Demokritos, Nokia Siemens Networks

    It is reported that the total energy consumed by the ICT infrastructure of wireless and wired networks takes up over 3 percent of the worldwide electric energy consumption that generated 2 percent of the worldwide CO2 emissions nowadays. It is predicted that in the future a major portion of expanding traffic volumes will be in wireless side. Furthermore, future wireless network systems (e.g., 4G/B4G) are increasingly demanded as broadband and high-speed tailored to support reliable Quality of Service (QoS) for numerous multimedia applications. With explosive growth of high-rate multimedia applications (e.g. HDTV and 3DTV), more and more energy will be consumed in wireless networks to meet the QoS requirements. Specifically, it is predicted that footprint of mobile wireless communications could almost triple from 2007 to 2020 corresponding to more than one-third of the present annual emissions of the whole UK. Therefore, energy-efficient green wireless communications are paid increasing attention given the limited energy resources and environment-friendly transmission requirements globally. The aim of this project is to improve the joint spectrum and energy efficiency of future wireless network systems using cognitive radio technology along with innovative game-theoretic resource scheduling methods, efficient cross-layer designs and contemporary clinical findings. We plan to consider the health and environmental concerns to introduce power-efficient resource scheduling designs that intelligently exploit the available wireless resources in next-generation systems. Our efforts will leverage applications of cognitive radio techniques to situational awareness of the communications system with adaptive power control and dynamic spectrum allocation. This project will underpin the UK green communication technology by designing environment-friendly joint power and spectrum efficient wireless communication systems.

  • Funder: UKRI Project Code: EP/J002933/1
    Funder Contribution: 461,898 GBP
    Partners: University of Leeds

    FORWARN aims to create a Forward Collision Warning (FCW) system that is able to consider driver distraction when making decisions on the appropriateness and timing of warnings. To achieve this, drivers will be asked to engage in a variety of distracting tasks in simulated driving scenarios requiring the engagement of a FCW. The FCW will later be 'trained' to ascertain driver distraction using vehicle- and driver-related metrics. The research proposed here aims to bridge the gap between work on assistance systems and work on the impact of driver distractions, by understanding the relationship between distraction, warnings and driver performance. This research will examine the effect of a variety of in-vehicle distracting tasks on driving performance, and establish how these can then be taken into account when designing an advanced driver assistance system such as FCW. A particular focus of this research will be to gain a better understanding of the distracting effect of non-visual tasks, such as engagement in hands free mobile phone conversations. FCW uses sensors and radar to scan the area ahead of the vehicle, and aims to avoid rear-end collisions, or reduce their impact, by advising drivers to brake. Some newer systems even intervene in some cases to avoid a collision. There are considerable potential benefits of such systems which have recently been proven in a large-scale Field Operational Test (FOT) in North America. However, there is a danger that systems which have permanently fixed criteria will be viewed by a significant number of drivers as presenting too many "false" (unwanted) warnings. Indeed, drivers in the U.S. Field Operational Test were keen to be able to tune the system to their personal preferences. Therefore, one main aim of the proposed project is to use eye tracking and vehicle related performance measures to identify the information that is needed by a FCW before it can establish whether or not a driver is distracted. Upon approach to a hazardous condition, this intelligent FCW will then only be triggered after if it has ascertained that the driver is truly distracted and unable to respond to the hazard in good time. As driving is a multi-faceted activity, assessing the effects of distraction on driving performance depend on the exact driver- and vehicle-related metrics being observed as well as the nature of the distracting task itself. This project will build upon the work already conducted by the group in this area during previous European projects such as AIDE (Adaptive Integrated Driver-vehicle interfacE) and HASTE (Human machine interface And the Safety of Traffic in Europe) and a recently completed EPSRC project, EASY (Effects of Automated Systems on safetY).

  • Funder: UKRI Project Code: EP/J020915/1
    Funder Contribution: 583,832 GBP
    Partners: UPM, Imperial College London, UCLH, AIT

    Argumentation provides a powerful mechanism for dealing with incomplete, possibly inconsistent information and for the resolution of conflicts and differences of opinion amongst different parties. Further, it is useful for justifying outcomes. Thus, argumentation can support several aspects of decision-making, either by individual entities performing critical thinking (needing to evaluate pros and cons of conflicting decisions) or by multiple entities dialectically engaged to come to mutually agreeable decisions (needing to assess the validity of information the entities become aware of and resolve conflicts), especially when decisions need to be transparently justified (e.g. in medicine). Because of its potential to support decision-making when transparently justifying decisions is essential, the use of argumentation has been considered in a number of settings, including medicine, law, e-procurement, e-business and design rationale in engineering. Potential users of existing argumentation-based decision-making methods are empowered by transparent methods, afforded by argumentation, but lack either means of formal evaluation sanctioning decisions as (individually or collectively) rational or a computational framework for supporting automation. The combination of these three features (transparency, rationality and computational tools for automation) is essential for argumentation-based decision-making to have a fruitful impact on applications. Indeed, for example, a medical practitioner would not find a "black-box" recommended decision useful, but he/she would also not trust a fully transparent, dialectically justified decision unless he/she were sure that this is the best one (rational). In addition, the plethora of information doctors need to take into account nowadays to make decisions requires automated support. TRaDAr aims at providing methods and prototype systems for various kinds of argumentation-based (individual and collaborative) decision-making that generate automatically transparent, rational decisions, while developing case studies in smart electricity and e-health to inform and validate methods and systems. In this context, TRaDAr's technical objectives are: (O1) to provide novel argumentation-based formulations of decision problems for individual and collaborative decision-making; (O2) to study formal properties of the formulations at (O1), sanctioning the rationality of decisions; (O3) to provide real-world case studies in smart electricity and e-health for (individual and collaborative) decision-making, using the formulations at (O1) and demonstrating the importance of the properties at (O2) as well as the transparent nature of argumentation-based decision-making; (O4) to define provably correct algorithms for the formulations at (O1), supporting rational and transparent (individual and collaborative) decision-making; (O5) to implement prototype systems incorporating the computational methods at (O4), and use these systems to demonstrate the methodology at (O1-O2) for the case studies at (O3). The project intends to develop novel techniques within an existing framework of computational argumentation, termed assumption-based argumentation, towards the achievements of these objectives, and adapting notions and techniques from classical (quantitative) decision theory and mechanism design in economics. The envisaged TRaDAr's methodology and systems will contribute to a sustainable society supported by the digital economy, and in particular they will support people in making informed choices. The project will focus on demonstrating the proposed techniques in specific case studies (smart electricity and e-health for breast cancer) in two chosen application areas (digital economy and e-health), but its outcomes could be far-reaching into other case studies (e.g. in other areas of medicine) as well as other sectors (e.g. in engineering, for supporting decisions on design choices).

  • Funder: UKRI Project Code: EP/N023986/1
    Funder Contribution: 19,354 GBP
    Partners: University of Leeds

    We are applying for funding to hold a workshop in algebraic Lie Theory from 4-4-2016 until 8-4-2016 at the University of Edinburgh. The three areas covered are finite W-algebras; representation theory and invariant theory of reductive groups and their Lie algebras; and representation theory of symplectic singularities. We want to bring together about 40 researchers, including top-level international experts, leading researchers, postdocs and PhD students.

  • Funder: UKRI Project Code: EP/J021709/1
    Funder Contribution: 329,399 GBP
    Partners: University of Leicester

    Methods for the formation of C-C and C-Y (Y = O, N) bonds are crucial for the synthesis of new molecules. In the last 30 years there have been huge advances in Pd-catalysed cross-coupling reactions and this was recognized in the award of the 2011 Nobel Prize. These reactions involve joining together two organic molecules, one of which features a bond between carbon and a halogen (a C-X bond) while the other coupling partner may feature a non-carbon centre such as tin, boron or zinc (a C-M bond). The coupling of these two partners to give a new C-C bond usually involves a palladium catalyst. More recent versions have coupled C-N or C-O bonds. These coupling reactions generally work well, however the efficiency of this individual step masks significant waste of time and energy, as well as problems with environmental sustainability. These problems arise because both C-X and C-M coupling partners ultimately derive from precursors that only contain C-H bonds and therefore require prior synthesis. This preactivation usually involves several steps, each with costly energy and purification implications. Moreover, the final coupling process itself eliminates salts (M-X) that must first of all be separated from the reaction products before disposal. This is a further costly and expensive process that often has a significant environmental impact. A far more desirable approach would be to use the unactivated C-H containing precursors directly as the coupling partners. Such compounds are readily available and cheap. This approach would circumvent the need for the costly and wasteful preactivation that is required to make C-X and M-C species, as well as the post processing clean up of M-X by-products. Until very recently this approach has not been adopted as C-H based precursors are usually rather chemically inert. However, catalysis based on such C-H species (catalytic C-H functionalisation) is now within reach, mainly due to recent advances where the means to activate the C-H bond with a transition metal catalyst have been understood. A key point in C-H functionalisation is to have a directing group elsewhere on the feedstock molecule so that it can interact with the metal catalyst and so bring the C-H bond close enough to react. The M-C bond that is thus formed can then undergo reactions with other substrates to produce the desired C-C, C-N or C-O bond. Moreover, if instead this new bond is formed with another atom in the same molecule then a ring is formed. Such cyclic compounds containing an N or O atom are called heterocyclic compounds and play a key role as major constituents of pharmaceuticals and agrochemicals. In addition, they often have interesting optical and electrical properties in their own right that are important in a range of technological applications. It is therefore crucial that the synthesis of heterocyclic compounds is as efficient as possible; moreover the need for a wide range of heterocycles with different properties depends upon the development of new, efficient methods for their synthesis. Although there is precedent for this type of catalytic C-H functionalisation in the scientific literature, to date there is little understanding of what controls this reactivity. Thus the range of species that can be made is limited, the catalysis is not yet efficient and the selectivity of the reaction is poorly understood. To improve this situation requires a deeper understanding of how these systems work. We aim to provide this here through a combination of experimental studies and computational modeling. By understanding the factors that control reactivity and selectivity we will be able to design new, more efficient catalysts and also to widen the scope of the catalytic C-H functionalisation methodology. The ultimate aim is to provide a flexible set of efficient synthetic tools that chemists will be able to use to make a wide range of important heterocycles in an environmentally sustainable manner.

  • Funder: UKRI Project Code: EP/M014134/1
    Funder Contribution: 97,162 GBP
    Partners: NTU

    Asphalt pavements are the most commonly road pavements in the UK. Preserving them in a proper state fundamentally affects the economy and quality of life. However, their surveillance and maintenance are cost and time intensive, and asphalt concrete still has to be replaced after 15 years of use. Applying induction heating into the road could make pavements last much longer by stimulating the asphalt`s property of self-healing. Experimental results have found that a crack can be fully induction-healed, for at least 5 times. The efficiency of self-healing, however, depends on the temperature of the material and the temperature should be concentrated in the cracks alone. Thus, the challenge of this research is to discover how to apply energy only locally into the cracks without dispersing energy into undesired spaces. With this purpose, experimental and mathematical models of asphalt concrete self-healing under induction heating will be developed. This research will serve to understand the relationships between induction heating, the particles used to heat the mixture, the heat flow through asphalt concrete and its effect on asphalt self-healing. We will discover the type of particles, intensities and frequencies of induction heating which are more appropriate for healing, how to concentrate the heat in the damaged areas and the relationship between the amount of energy induced and the healing of asphalt concrete.

  • Funder: UKRI Project Code: EP/N508603/1
    Funder Contribution: 148,054 GBP
    Partners: University of Strathclyde

    Our concept of a distributed electrical and environmental sensor system to enable unprecedented flexibility and reduction of cost in deploying innovative measurement, control and protection functions for the power network requires to be proven in the context of relevant industry standards, with particular emphasis on current and voltage measurements. Consequently, the core research idea of this proposal is to assess the feasibility of this undertaking through systematic research and implementation of a range of innovative error compensation methods. In particular, the feasibility study will aim to demonstrate that metering and protection accuracy classes for voltage and current transducers are attainable by this technology. In order to address the objectives of the project, the research programme will be subdivided into specific work packages. The scope and methodologies adopted with respect to the individual tasks are described in the Case for Support attachment under the following work packages: WP1. Engagement with stakeholders (Month 1-12) WP2. Design and simulation of transducers and experiments. (Month 1-7) WP3. Assembly and packaging of electrical current and voltage transducers. (Month 4-7) WP4. Characterisation and environmental/high-voltage stress testing of transducers (Month 7-12) WP5. Development and testing of sensor interrogation hardware and software. (Month 1-12)

  • Project . 2013 - 2016
    Funder: UKRI Project Code: EP/K020323/1
    Funder Contribution: 994,065 GBP
    Partners: URT Group Ltd, University of London

    WAM is a project which started from asking a question about what would make a transformational difference to someone who is experiencing difficulties in walking. The answer was to be able to walk without visible (or audible) assistance. Following some initial work in an EPSRC project called RELEASE, WAM is starting on the road to developing just this sort of assistive technology: an exoskeleton that can be worn and that can also act as a muscle so that it can support the whole walking cycle, providing support and control to the user and enabling them to walk otherwise unaided. We have selected some of the likely possibilities from those explored during the RELEASE project and WAM will develop these further, combine them and test them against the strength, stiffness, flexion and strain requirements of the walking process. Three technologies will be explored in parallel: (1) using Vanadium Oxide (V2O5) as a chemical actuator, (2) using magnetic gels as a dynamic controllable mechanism and (3) using interlockable ceramic tiles as a surface medium. V2O5 is able to flex when exposed to an electrostatic potential and can exhibit strength (about 10 times the strength found in skeletal muscle) so this would seem to be a useful substance to use as the basis for an actuator. Macroporous magnetic gels can be used to compress rapidly under a magnetic field to deliver drugs (by squeezing the drugs from the pores as the material compresses under the influence of an induced magnetic field). Interlockable ceramic tiles can provide the stiffness needed for the rigidity needed by a skeleton, but once unlocked an allow the structure to bend in a required direction. These will be tested separately and in combination to see if the V2O5 working with the magnetic gel could act as a sufficiently strong actuator and key for the locking/unlocking mechanism so that the material can demonstrate sufficient strength, stiffness and strain capabilities to be worth scaling up in a future project to assist walking. Other possibilities would also be available from such material - it does not have to be used only for walking as it could be used for other joints which can need support but which also need to bend - elbow, wrist, ankle as well as knee are all candidates for such support. Also, it might provide an interesting support where it is desirable to make the assistance variable - when the person needs support and when they would benefit from being encouraged to take on the activity themselves. A variably flexible material of this sort would therefore be of use in conditions such as limb fractures (where absolutely fixed support is essential at one point on the process, but rehabilitation of associated muscles would be beneficial as the facture is healing, but is still weak, before the fixed support can be removed) or conditions such as Carpal Tunnel Syndrome where support needs might vary. While the technological work is underway we will be working with a patients' group and a group of clinicians to understand more about what end users might be looking for in their assistive technology and how this particular type of support might be useful for them. It is important to realise that this is a novel way of providing dynamic support for activities such as walking and thus there is a sense of all sides needing to understand how best to use the technology as it emerges from the laboratory. The present project will not deliver the full working prototype of a walking support system, but it will develop, test and show what can be done in terms of the material and its control system and the extent to which this approach to actuation of locomotory support could be achieved. The final tests will show how much stiffness and strength it can deliver and thus whether or not this is the right way to proceed in further projects.

Send a message
How can we help?
We usually respond in a few hours.